Ответы
Ответ дал:
0
МК - средняя линия треугольника АВС.
МК= 1/2 * АВ.
Доказательство:
∠С - общий => ΔАВС ≈ Δ МКС (по второму признаку подобия) =>
MK = 1/2 * 16 = 8
∠BMN=∠BCA = 45°
∠CBA=∠CMK = 45° (т.к. ∠С=90°, ∠М=45°, то ∠К=45°)
Если катеты прямоугольного треугольника равны, то такой треугольник является равнобедренным прямоугольным треугольником.
МК=а√2 => а= МК/√2 = 8/√2 = 4√2
Найдем периметр:
Р=a+b+c = 4√2 + 4√2 + 8 = 8√2 +8 (≈19.31)
Вас заинтересует
2 года назад
2 года назад
3 года назад
3 года назад
9 лет назад
10 лет назад