• Предмет: Алгебра
  • Автор: Geld228
  • Вопрос задан 7 лет назад

Log(cosX)sinX + log(sinX)cоsX -2=0
В скобках я написал основания.
СПАСИБО ЕСЛИ ОТВЕТИЛИ)

Ответы

Ответ дал: oganesbagoyan
0

https://znanija.com/task/3429131

* * * * * * * * * * * * * * * * * * * * * * * * *

Log(cosX)sinX + Log(sinX)cоsX -2=0

* * * В скобках  основания  логарифма * *

Ответ:   Ответ:  X =π/4+2πk ,   k ∈ ℤ.

------------------------

Объяснение:  * * *  Log(a) b = Log(b)  a  * * *

ОДЗ:  { sinX>0 ; cosX>0; sinX ≠ 1 ; cosX ≠ 1. ⇒  2πn  < X <2πn+π/2

Log(cosX)sinX + 1/Log(cosX)sinX -2=0 ;

Log²(cosX)sinX -2Log(cosX)sinX +1=0 ;

( Log(cosX)sinX - 1 )²=0;

Log(cosX)sinX - 1 =0 ;

Log(cosX)sinX = 1 ;

sinX = cosX   | : cosX ≠ 0

tgX =1 ;

X =π/4+π*n  ,     n ∈ ℤ ;     учитывая   ОДЗ , получаем

Ответ:  X =π/4+2πk ,   k ∈ ℤ.

Вас заинтересует