Ответы
Ответ дал:
0
Решение:
y'=64/3*3/2*x^(1/2)-4/3*3*x^2
y'=0
32*sqrt(x)-4x^2=0
8=x^3/2
x=4
y(4)=64/3*8-4/3*4^3=256/3 максимум
y(1)=64/3-4/3=60/3=20
y(16)=16*4*4^3/3-4*16^3/3=16^3/3(1-4)=-16^3 минимум.
y'=64/3*3/2*x^(1/2)-4/3*3*x^2
y'=0
32*sqrt(x)-4x^2=0
8=x^3/2
x=4
y(4)=64/3*8-4/3*4^3=256/3 максимум
y(1)=64/3-4/3=60/3=20
y(16)=16*4*4^3/3-4*16^3/3=16^3/3(1-4)=-16^3 минимум.
Вас заинтересует
2 года назад
2 года назад
8 лет назад
10 лет назад
10 лет назад
10 лет назад