• Предмет: Алгебра
  • Автор: sofiyagoel
  • Вопрос задан 6 лет назад

Найти длину дуги кривой

Приложения:

Ответы

Ответ дал: Vasily1975
0

Ответ: L=1+1/2*ln(3/2)≈1,2.

Объяснение:

Искомая длина L=∫√[1+(y')²]*dx с пределами интегрирования a=√3 и b=√8. В данном случае y=ln(x), поэтому y'=1/x и √[1+(y')²=1/x*√(x²+1).  

1. Найдём первообразную F(x)=∫1/x*√(x²+1)*dx. Под знаком интеграла находится так называемый биномиальный дифференциал, то есть выражение вида x^m*(a+b*x^n)^p*dx. В нашем случае m=-1, a=b=1, n=2 и p=1/2. Так как число q=(m+1)/n-1=-1 - целое, то первообразную F(x) можно найти в конечном виде. Обозначим знаменатель дроби p через v:  в нашем случае v=2. Применим подстановку t=(a+b*x^n)^(1/v), то есть в нашем случае положим t=√(x²+1). Отсюда t²=x²+1, x²=t²-1, x=√(t²-1), dx=t*dt/√(t²-1) и тогда искомый интеграл примет вид ∫t²*dt/(t²-1)=∫dt+∫dt/(t²-1)=t+1/2*ln/(t-1)/(t+1)/. Таким образом, вместо первообразной F(x) найдена первообразная F1(t)=t+1/2*ln/(t-1)/(t+1)/.

2. Для нахождения L, во избежание возврата к переменной x, перейдём к новым пределам интегрирования a1 и b1 по формулам: a1=√(a²+1)=2 и b1=√(b²+1)=3. Подставляя в выражение для первообразной F1(t) эти пределы интегрирования, находим L=F1(3)-F1(2)=3+1/2*ln(1/2)-[2+1/2*ln(1/3)]=1+1/2*ln(3/2).      

Вас заинтересует