• Предмет: Математика
  • Автор: Sigment138
  • Вопрос задан 2 года назад

Найдите sin 2a если
cos a = 2/(корень из 5); a принадлежит (- П/2; 0)
Заранее большое спасибо.

Ответы

Ответ дал: TobeeM
1

Ответ:

-0,8

Пошаговое объяснение:

sin2a = 2sinacosa (по формуле двойного угла)

sina=-\sqrt{1-(\frac{2}{\sqrt{5} }) ^{2} }  = -\sqrt{1-\frac{4}{{5} } } = -\sqrt{\frac{1}{5} } = -\frac{1}{\sqrt{5} } (минус перед корнем, так как синус в области (-pi/2; 0) отрицательный)

Осталось только подставить:

sin2a=-2\frac{1}{\sqrt{5} } * \frac{2}{\sqrt{5} } = -\frac{4}{5} = -0,8

Вас заинтересует