Квадраты ABCD и AECF расположены так что BD перпендикулярно EF.
а) Доказать что прямая EF перпендикулярна к плоскости ABC
б)Найти угол между прямыми АС и ЕD
Ответы
                                            Ответ дал: 
                                                                                    
                                        
                                            
                                                
                                                
                                                
                                                    0
                                                
                                            
                                        
                                    
                                        а) По условию EF⊥BD, и EF⊥AC как диагонали квадрата AECF.
Прямая EF перпендикулярна двум пересекающимся прямым плоскости (АВС) ⇒ EF⊥(ABC).
б) АС⊥EF как диагонали квадрата AECF, АС⊥BD как диагонали квадрата ABCD, ⇒ АС⊥(EBD).
ED⊂(EBD) ⇒ AC⊥ED, т.е. угол между прямыми АС и ED равен 90°
                                    
                                                Прямая EF перпендикулярна двум пересекающимся прямым плоскости (АВС) ⇒ EF⊥(ABC).
б) АС⊥EF как диагонали квадрата AECF, АС⊥BD как диагонали квадрата ABCD, ⇒ АС⊥(EBD).
ED⊂(EBD) ⇒ AC⊥ED, т.е. угол между прямыми АС и ED равен 90°
Приложения:
                    
                            Вас заинтересует
                
                        2 года назад
                    
                
                        2 года назад
                    
                
                        8 лет назад
                    
                
                        10 лет назад
                    
                
                        10 лет назад
                    
                
                        10 лет назад