1. Розв'яжіть рівняння: 1) 2x^2-7x+6=0; 2) x^2-6x+9=0. 2. Одна із сторін прямокутника на 5 см менша за другу, а його площа дорівнює 84см^2. Знайдіть периметр прямокутника. 3. Розв'яжіть рівняння (квадратний корінь з x - 3)(x^+2x-8)=0.
Ответы
Ответ:
Решение:
x^2 - 6x + 9 = 0
D = b2 - 4ac
D = (-6)^2-4*1*9 = 36 - 36 = 0
D=0, 1 корень
x = - b/2a
x= 6/2=3
x = 3
Х - ширина
х+5 - длина
х (х+5) = 84
x2+5x-84=0
D=52-4*1 * (-84) = 25+336=361=192
x1 = (-5-19) / 2=-12 не подходит по условию
х2 = (-5+19) / 2=7 (см) - ширина
7+5=12 (см) - длина
Р=2 (12+7) = 38 (см) - периметр
Ответ: 38 см.
1. 1) 2x²-7x+6=0; х=(7±√(49-48))/4; х= 2; х=1.5
2) x²2-6x+9=0; (х-3)²=0⇒х=3
2. Одна. меньшая сторона х, другая (х+5)см, уравнение х*(х+5)=84
х²+5х-84=0, по Виету х= -12 ∅, т.к. сторона не может быть отрицательной. х=7. Значит, меньшая сторона равна 7, тогда большая 7+5=12/см/, а периметр 2*(7+12)=38/см/
√(х-3)*(х²+2х-8)=0
ОДЗ х≥3, х²+2х-8=0, По Виету х=-4; ∅, х=2∈ ОДЗ,
х-3=0, х=3
Ответ х=3, х=2
х²+2х-8=0, здесь опечатка.