• Предмет: Геометрия
  • Автор: slava2070
  • Вопрос задан 10 лет назад

помогите решить плизззз. Дано, доказать, доказательствоПусть S - площадь треугольника АВС. Примем сторону АВ за основание треугольника и проведем высоту СН. Докажем что

S = 1/2*АВ*СН

Достроим треугольник АВС до параллелограма АВDС так, как показано на рисунке. Треугольники АВС и BCD равны по трем сторонам (BC - их общая сторона, АВ = CD и АС = BD как противоположные стороны параллелограма ABCD), поэтому их площади равны. Следовательно, площадь S треугольника АВС равна половине площади параллелограма ABCD, т.е.

S = 1/2*AB*CH

Ответы

Ответ дал: arhangel13
0
Следующее доказательство алгебраической формулировки — наиболее простое из доказательств, строящихся напрямую из аксиом. В частности, оно не использует понятие площади фигуры.
Пусть ABC есть прямоугольный треугольник с прямым углом C. Проведём высоту из C и обозначим её основание через H. Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC. Введя обозначения

получаем

Что эквивалентно

Сложив, получаем

или Следующее доказательство алгебраической формулировки — наиболее простое из доказательств, строящихся напрямую из аксиом. В частности, оно не использует понятие площади фигуры.
Пусть ABC есть прямоугольный треугольник с прямым углом C. Проведём высоту из C и обозначим её основание через H. Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC. Введя обозначения

получаем

Что эквивалентно

Сложив, получаем

или 
 

 

Вас заинтересует