Доказать,что треугольник равнобедренный,если высота проведенная из вершины к основанию является медианой.
Ответы
Ответ дал:
0
АВС треугольник, ВМ - высота и медиана.
Рассмотрим треугольники АВМ и СВМ. Они равны по 1 признаку равенства треугольников (две стороны и угол между ними) АМ=СМ, т.к. ВМ - медиана по условию, угВМА=угВМС, ВМ - высота, эти углы смежные и прямые, ВМ - общая.
Или они равны по признаку равенства прямоугольных треугольников: катету и гипотенузе. Из равенства треугольников следует, что АВ=СВ, значит АВС равнобедренный.
Рассмотрим треугольники АВМ и СВМ. Они равны по 1 признаку равенства треугольников (две стороны и угол между ними) АМ=СМ, т.к. ВМ - медиана по условию, угВМА=угВМС, ВМ - высота, эти углы смежные и прямые, ВМ - общая.
Или они равны по признаку равенства прямоугольных треугольников: катету и гипотенузе. Из равенства треугольников следует, что АВ=СВ, значит АВС равнобедренный.
Вас заинтересует
2 года назад
8 лет назад
8 лет назад
10 лет назад
10 лет назад
10 лет назад