Известно, что два ластика и три тетради стоят 35 грн, а две тетради и три ластика стоят 40 грн. Необходимо выяснить, сколько стоят пять ластиков и шесть тетрадей.
P.s: надо решить с помощью систем уравнений
Ответы
Ответ дал:
3
Ответ: 5 ластиков=50грн
6 тетрадей=30грн
Объяснение: пусть ластик будет х, а тетрадь у. Зная что за 2 ластика и 3 тетради уплатили 35грн, то первое уравнение будет выглядеть так:
2х+3у=35. За две тетради уплатили 2у, а за 3 ластика 3х, всё это вместе стоило 40грн. 2-е уравнение будет выглядеть так: 3х+2у=40. Итак:
{2х+3у=35
{3х+2у=40|÷2
{2х+3у=35
{1,5х+у=20
{2х+3у=35
{у=20-1,5х
Теперь подставим значение у в первое уравнение: 2х+3у=35
2х+3(20-1,5х)=35
2х+60-4,5х=35
- 2,5х=35-60
- 2,5х= - 25
х= -25÷(- 2,5)
х=10; мы нашли стоимость 1 ластика. Теперь найдём стоимость 1 тетради, подставив значение х в: у=20-1,5х:
у=20-1,5×10=20-15=5грн; мы нашли стоимость 1 тетради. Теперь найдём стоимость 5 ластиков и шести тетрадей:
5 ластиков=10×5=50грн
6 тетрадей=5×6=30грн
Вас заинтересует
2 года назад
2 года назад
2 года назад
7 лет назад
7 лет назад