• Предмет: Алгебра
  • Автор: azadorozhnyy20p7of4g
  • Вопрос задан 3 года назад

помогите пожалуйста ​

Приложения:

Ответы

Ответ дал: shavrinatv
0

Ответ:

Объяснение:

Знаходимо похідну функції:

\frac{2x(3x-6)-(x^{2}+5)3 }{(3x-6)^{2} } =\frac{3x^{2}-12x-15 }{(3x-6)^{2}} \\\frac{3x^{2}-12x-15 }{(3x-6)^{2}}=0\\{x^{2}-4x-5 }=0\\ (3x-6)^{2}\neq 0\\

Знаходимо за   т. Вієта : х₁=-1 и х₂=5 и х≠2

     

-_____-1______2___________5_______

+            0   -     не існує          -    0     +

Функція спадає на проміжках(-1;2) та (2;5) (там де вона від'ємна та існує)

Вас заинтересует