• Предмет: Геометрия
  • Автор: altynai0504
  • Вопрос задан 3 года назад

Через сторону АВ ромба ABCD проходит плоскость α так, что ВС ⊥α. Докажите, что ABCD – квадрат.

Ответы

Ответ дал: ужнеужели
7

Ответ: Эврика! Это квадрат!

Объяснение:

Приложения:

orjabinina: Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в плоскости.
Т.к. ВС перпендикулярна плоскости альфа, то значит перпендикулярна и любой прямой этой плоскости, в данном случае АВ. Поэтому угол АВС=90 , А т.к противоположные углы равны , то и угол Д=90.Значит АВСД-квадрат.
ужнеужели: Я вот это хотел сказать. А как получилось, так и получилось. http://prntscr.com/sxeg2z
orjabinina: согласна.
ужнеужели: Вообще-то, правы Вы, по большому счёту. Не могли бы Вы оказать мне услугу? Отметьте мое решение неверным, что бы его удалили. Я в долгу не останусь.
orjabinina: Нет
Вас заинтересует