• Предмет: Математика
  • Автор: katrinesina
  • Вопрос задан 3 года назад

Помогите с 13 заданием (а). Это из ЕГЭ профильная математика. Не могу понять, как решить(сборник 2018г)

Приложения:

Ответы

Ответ дал: aastap7775
1

1 + \frac{1}{3^{ctg(x)}} = 4*9^{\frac{cos(x-\frac{\pi}{4}) }{\sqrt{2}sin(x)}}\\\frac{cos(x-\frac{\pi}{4}) }{\sqrt{2}sin(x)} = \frac{cos(x)+sin(x)}{2sin(x)} = \frac{ctg(x)}{2} + \frac{1}{2}\\ 1 + \frac{1}{3^{ctg(x)}} = 4*9^{\frac{ctg(x)}{2} + \frac{1}{2}}\\\\ 1 + \frac{1}{3^{ctg(x)}} = 4*9^{\frac{1}{2}} * 9^{\frac{ctg(x)}{2}}\\ 1 + \frac{1}{3^{ctg(x)}} = 12 * 3^{ctg(x)}\\\\3^{ctg(x)} = t > 0 \\1 + t^{-1} = 12t\\12t^2 - t - 1 = 0\\D = 1 + 4*12 = 49 = 7^2\\t_1_,_2 = \frac{1\pm7}{24} => t = \frac{1}{3} \\

3^{ctg(x)} = \frac{1}{3} \\\\ctg(x) = -1\\x = -\frac{\pi}{4} + \pi n , n \in Z


igorShap: Sinx/(2sinx)=1/2, а не 1
aastap7775: Точно-точно....
Вас заинтересует