..............................................................................
Решить неравенство
Приложения:
Ответы
Ответ дал:
1
Данное неравенство равносильно системе неравенств:
Нули модулей:
Раскроем модули на пяти участках, используя правило раскрытия модуля:
Учитывая условие,
Учитывая условие,
Учитывая условие,
Учитывая условие,
Нет решений.
Объединим все пять случаев решения:
Имеем:
Находим пересечение решений:
Ограничения:
Учитывая условие,
Объединяем решения:
Получили решения обоих неравенств в системе неравенств:
Находим пересечение решений:
Ответ:
vityamath:
спасибо огромное, очень длинное неравенство
для 9 класса оно вообще трудно, по вашему мнению?
Девятиклассникам это вполне по силам решить, кто хорошо разбирается в математике. Здесь есть все темы, которые прошли в 9-м классе: решение неравенств с модулем, с квадратными корнями; решение дробно-рациональных неравенств; решение систем неравенств. Здесь эта система неравенств повышенного уровня сложности.
Обычным школьникам это трудно будет решать, а тем, кто учиться в классе с математическим уклоном или в гимназии, - вполне не сложно.
чуть короче решение получится, если использовать формулу: |x|=√(x²) и тогда сравнение двух модулей |a|-|b| > 0 <=> |a| > |b| равносильно √(a²) > √(b²) <=> a² > b² <=> a² - b² > 0 формула разность квадратов... |х²-2х-6| > |х²-6| <=> (-2х)*2*(х²-х-6) > 0... корни по т.Виета (устно) без иррациональности...
Ещё дополнительно придеться учесть ОДЗ каждого из подкоренных выражений.
Хотя нет, не придется. Да, хороший вариант решения.
согласен что |a| >= |b| a² >= b² (a -b)(a + b) >=0
две положительных величины возводи в любую натуральную степень никаких дополнительных ограничений при этом не возникнет.
две положительных величины возводи в любую натуральную степень никаких дополнительных ограничений при этом не возникнет.
Вас заинтересует
2 года назад
2 года назад
2 года назад
2 года назад
7 лет назад
7 лет назад