• Предмет: Математика
  • Автор: Аноним
  • Вопрос задан 2 года назад

а₁, а₂,а₃, а₄, а₅- члены арифметической прогрессии с разностью d, cosd=√0.2. Найти cos²а₃, если tga₁*tga₁2+tga₂*tga₃+tga₃*tga₄+tga₄*tga₅=4


alpamyshovt55: скко можно печать надиели
armybts63: ++
Аноним: привет
Аноним: Ты тут
Аноним: ?...
alpamyshovt55: я тут
Аноним: я не тебе
Аноним: помогите пожалуйста мне с русским языком
Аноним: помогите пожалуйста помогите пожалуйста помогите пожалуйста помогите пожалуйста помогите пожалуйста помогите пожалуйста помогите пожалуйста помогите пожалуйста помогите пожалуйста помогите пожалуйста помогите пожалуйста помогите пожалуйста помогите пожалуйста помогите пожалуйста помогите пожалуйста помогите пожалуйста помогите пожалуйста помогите пожалуйста
alpamyshovt55: если ты попрошайничать будешь тебе 100процентов не помогут

Ответы

Ответ дал: Artem112
152

\mathrm{tg}a_1\mathrm{tg}a_2+\mathrm{tg}a_2\mathrm{tg}a_3+\mathrm{tg}a_3\mathrm{tg}a_4+\mathrm{tg}a_4\mathrm{tg}a_5=4

Выразим через третий член и разность прогрессии все остальные члены:

a_1=a_3-2d

a_2=a_3-d

a_4=a_3+d

a_5=a_3+2d

Подставим получившиеся соотношения в уравнение:

\mathrm{tg}(a_3-2d)\cdot\mathrm{tg}(a_3-d)+\mathrm{tg}(a_3-d)\cdot\mathrm{tg}a_3+

+\mathrm{tg}a_3\cdot\mathrm{tg}(a_3+d)+\mathrm{tg}(a_3+d)\cdot\mathrm{tg}(a_3+2d)=4

Применяем формулы тангенса суммы и тангенса разности:

\dfrac{\mathrm{tg}a_3-\mathrm{tg}2d}{1+\mathrm{tg}a_3\mathrm{tg}2d}\cdot\dfrac{\mathrm{tg}a_3-\mathrm{tg}d}{1+\mathrm{tg}a_3\mathrm{tg}d}+\dfrac{\mathrm{tg}a_3-\mathrm{tg}d}{1+\mathrm{tg}a_3\mathrm{tg}d}\cdot\mathrm{tg}a_3+

+\mathrm{tg}a_3\cdot\dfrac{\mathrm{tg}a_3+\mathrm{tg}d}{1-\mathrm{tg}a_3\mathrm{tg}d}+\dfrac{\mathrm{tg}a_3+\mathrm{tg}d}{1-\mathrm{tg}a_3\mathrm{tg}d}\cdot\dfrac{\mathrm{tg}a_3+\mathrm{tg}2d}{1-\mathrm{tg}a_3\mathrm{tg}2d}=4

Из имеющегося соотношения для разности прогрессии выразим величины \mathrm{tg}d и \mathrm{tg}2d:

\cos d=\sqrt{0.2}

\mathrm{tg}^2d=\dfrac{1}{\cos^2d} -1=\dfrac{1}{0.2} -1=5-1=4

1) \mathrm{tg}d=2\Rightarrow \mathrm{tg}2d=\dfrac{2\mathrm{tg}d}{1-\mathrm{tg}^2d} =\dfrac{2\cdot2}{1-2^2} =-\dfrac{4}{3}

2) \mathrm{tg}d=-2\Rightarrow \mathrm{tg}2d=\dfrac{2\mathrm{tg}d}{1-\mathrm{tg}^2d} =\dfrac{2\cdot(-2)}{1-(-2)^2} =\dfrac{4}{3}

Первый случай: \mathrm{tg}d=2,\ \mathrm{tg}2d=-\dfrac{4}{3}

\dfrac{\mathrm{tg}a_3+\frac{4}{3} }{1-\frac{4}{3}\mathrm{tg}a_3}\cdot\dfrac{\mathrm{tg}a_3-2}{1+2\mathrm{tg}a_3}+\dfrac{\mathrm{tg}a_3-2}{1+2\mathrm{tg}a_3}\cdot\mathrm{tg}a_3+

+\mathrm{tg}a_3\cdot\dfrac{\mathrm{tg}a_3+2}{1-2\mathrm{tg}a_3}+\dfrac{\mathrm{tg}a_3+2}{1-2\mathrm{tg}a_3}\cdot\dfrac{\mathrm{tg}a_3+\frac{4}{3} }{1-\frac{4}{3}\mathrm{tg}a_3}=4

Замена: \mathrm{tg}a_3=t

\dfrac{t+\frac{4}{3} }{1-\frac{4}{3}t}\cdot\dfrac{t-2}{1+2t}+\dfrac{t-2}{1+2t}\cdot t+t\cdot\dfrac{t+2}{1-2t}+\dfrac{t+2}{1-2t}\cdot\dfrac{t-\frac{4}{3} }{1+\frac{4}{3}t}=4

Числитель и знаменатель первой и последней дроби умножим на 3:

\dfrac{3t+4 }{3-4t}\cdot\dfrac{t-2}{1+2t}+\dfrac{t-2}{1+2t}\cdot t+t\cdot\dfrac{t+2}{1-2t}+\dfrac{t+2}{1-2t}\cdot\dfrac{3t-4}{3+4t}=4

Складываем первые два слагаемых левой части уравнения:

\dfrac{3t+4}{3-4t}\cdot\dfrac{t-2}{1+2t}+\dfrac{t-2}{1+2t}\cdot t=\dfrac{t-2}{1+2t}\cdot\left(\dfrac{3t+4}{3-4t}+t\right)=

=\dfrac{t-2}{1+2t}\cdot\dfrac{3t+4+t(3-4t)}{3-4t}=\dfrac{t-2}{1+2t}\cdot\dfrac{3t+4+3t-4t^2}{3-4t}=

=\dfrac{t-2}{1+2t}\cdot\dfrac{4+6t-4t^2}{3-4t}=\dfrac{t-2}{1+2t}\cdot\dfrac{-2(t-2)(2t+1)}{3-4t}=

=\dfrac{-2(t-2)^2(2t+1)}{(1+2t)(3-4t)}=-\dfrac{2(t-2)^2}{3-4t}

Складываем последние два слагаемых левой части уравнения:

t\cdot\dfrac{t+2}{1-2t}+\dfrac{t+2}{1-2t}\cdot\dfrac{3t-4}{3+4t}=\dfrac{t+2}{1-2t}\cdot\left(t+\dfrac{3t-4}{3+4t}\right)=

=\dfrac{t+2}{1-2t}\cdot\dfrac{t(3+4t)+3t+4}{3+4t}=\dfrac{t+2}{1-2t}\cdot\dfrac{3t+4t^2+3t+4}{3+4t}=

=\dfrac{t+2}{1-2t}\cdot\dfrac{4t^2+6t+4}{3+4t}=\dfrac{t+2}{1-2t}\cdot\dfrac{2(t+2)(2t-1)}{3+4t}=

=\dfrac{2(t+2)^2(2t-1)}{(1-2t)(3+4t)}=-\dfrac{2(t+2)^2}{3+4t}

Складываем две получившиеся в предыдущих пунктах величины:

-\dfrac{2(t-2)^2}{3-4t}-\dfrac{2(t+2)^2}{3+4t}=-2\left(\dfrac{(t-2)^2}{3-4t}+\dfrac{(t+2)^2}{3+4t}\right)=

=-2\left(\dfrac{t^2-4t+4}{3-4t}+\dfrac{t^2+4t+4}{3+4t}\right)=

=-2\left(\dfrac{(t^2-4t+4)(3+4t)+(t^2+4t+4)(3-4t)}{(3-4t)(3+4t)}\right)=

=-2\left(\dfrac{3t^2+4t^3-12t-16t^2+12+16t+3t^2-4t^3+12t-16t^2+12-16t}{9-16t^2}\right)=

=-2\left(\dfrac{3t^2-16t^2+12+3t^2-16t^2+12}{9-16t^2}\right)=-2\left(\dfrac{-26t^2+24}{9-16t^2}\right)=\dfrac{52t^2-48}{9-16t^2}

Тогда, уравнение примет вид:

\dfrac{52t^2-48}{9-16t^2}=4

52t^2-48=4(9-16t^2)

52t^2-48=36-64t^2

116t^2=84

t^2=\dfrac{84}{116} =\dfrac{21}{29}

t=\pm\sqrt{\dfrac{21}{29} }

Обратная замена: \mathrm{tg}a_3=\pm\sqrt{\dfrac{21}{29} }

Находим требуемую величину:

\cos^2 a_3=\dfrac{1}{1+\mathrm{tg}^2a_3} =\dfrac{1}{1+\frac{21}{29} } =\dfrac{1}{\frac{50}{29} } =\dfrac{29}{50} =\boxed{0.58}

Второй случай: \mathrm{tg}d=-2,\ \mathrm{tg}2d=\dfrac{4}{3}

Заметим, что при подстановке этих значений в уравнение, получится такое же уравнение, как и в предыдущем случае с той лишь разницей, что первое и четвертое, а также второе и третье слагаемое будут поменяны местами. Значит, никаких новых результатов получено не будет.

Ответ: 0.58


Аноним: помогите пожалуйстапомогите пожалуйстапомогите пожалуйстапомогите пожалуйста
Аноним: помогите пожалуйста
Аноним: помогите пожалуйстапомогите пожалуйстапомогите пожалуйстапомогите пожалуйстапомогите пожалуйста
Аноним: помогите пожалуйстапомогите пожалуйста✄помогите пожалуйста
Аноним: Срочнооооо
Аноним: а то 2 поставят
Аноним: за 30 мин
Аноним: помогите пожалуйстапомогите пожалуйстапомогите пожалуйста
Аноним: помогите пожалуйстапомогите пожалуйстапомогите пожалуйстапомогите пожалуйстапомогите пожалуйста
Аноним: что помочь
Вас заинтересует