Ответы
Ответ дал:
0
Треугольник РМК не равнобедренный, и углы при его основании не равны 30° Высоту МН этого треугольника можно найти из его площади.
Площадь треугольника равна половине произведения его сторон на синус угла, заключенного между ними.
S = 1/2 РМ* MN * sin(120)
S = 1/2 3*4* √3/2=3√3
Но площадь треугольника равна и половине произведения его высоты на сторону, к которой она проведена.
S=ah:2
МН проведена к РК.
РК найдем по теореме косинусов:
PK² = 3² + 4² - 2*3*4*cos(120°) = 9 + 16 -24(-1/2)=37
PK=√37
МН=2 S:37=(6√3):√37 или
МН=10,3923:6,0827≈1,7 см
Площадь треугольника равна половине произведения его сторон на синус угла, заключенного между ними.
S = 1/2 РМ* MN * sin(120)
S = 1/2 3*4* √3/2=3√3
Но площадь треугольника равна и половине произведения его высоты на сторону, к которой она проведена.
S=ah:2
МН проведена к РК.
РК найдем по теореме косинусов:
PK² = 3² + 4² - 2*3*4*cos(120°) = 9 + 16 -24(-1/2)=37
PK=√37
МН=2 S:37=(6√3):√37 или
МН=10,3923:6,0827≈1,7 см
Вас заинтересует
1 год назад
9 лет назад
9 лет назад