• Предмет: Алгебра
  • Автор: seme4ka121
  • Вопрос задан 3 года назад

F(x)=-4*x^2+13
Найти при F=5
F=3
F=0
F=-0.1
F=1/4
F=1 целая 1/2

Ответы

Ответ дал: QDominus
1

F(x) =  - 4 {x}^{2}  + 13

1)

F(x) = 5 \\  - 4 {x}^{2}  + 13 = 5 \\  - 4 {x}^{2}  =  - 8 \\  {x}^{2}  = 2 \\ x = ± \sqrt{2}

2)

F(x) = 3 \\  - 4 {x}^{2}  + 13 = 3 \\  - 4 {x}^{2}  =  - 10 \\  {x}^{2}  =  \frac{10}{4}  \\ x = ± \frac{ \sqrt{10} }{2}

3)

F(x) = 0 \\  - 4 {x}^{2}  + 13 = 0 \\  - 4 {x}^{2}  =  - 13 \\  {x}^{2}  =  \frac{13}{4}  \\ x = ± \frac{ \sqrt{13} }{2}

4)

F(x) =  - 0.1 \\  - 4 {x}^{2}  + 13 =  - 0.1 \\  - 40 {x}^{2}   + 130 =  - 1 \\  - 40 {x}^{2}  =  - 131 \\  {x}^{2}  =  \frac{131}{40}  \\ x = ± \sqrt{ \frac{131}{40} }  \\ x = ± \frac{ \sqrt{1310} }{20}

5)

F(x) =  \frac{1}{4}  \\  - 4 {x}^{2}  + 13 =  \frac{1}{4}  \\  - 16 {x}^{2}  + 52 = 1 \\  - 16 {x}^{2}  =  - 51 \\  {x}^{2}  =  \frac{51}{16}  \\ x = ± \frac{ \sqrt{51} }{4}

6)

F(x) = 2 \frac{1}{2}  =  \frac{5}{2}  \\  - 4 {x}^{2}  + 13 =  \frac{5}{2}  \\  - 8 {x}^{2}  + 26 = 5 \\  - 8 {x}^{2}  =  - 21 \\  {x}^{2}  =  \frac{21}{8}  \\ x = ± \frac{ \sqrt{21}  \sqrt{2} }{2 \sqrt{2}  \sqrt{2} }  \\ x = ± \frac{ \sqrt{42} }{4}

Вас заинтересует