• Предмет: Математика
  • Автор: teploodetaya
  • Вопрос задан 3 года назад

Буду благодарна.
Показатель-ые уравнения
(половина или меньше половины).

Приложения:

Ответы

Ответ дал: Miroslava227
1

Ответ:

1) {3}^{ {x}^{2}  - 4x}  =  {3}^{0}  \\  {x}^{2}  - 4x = 0 \\ x1 = 0 \\ x2 = 4

2) {( \frac{1}{2} )}^{ {x}^{2}  - x - 20}  =  {( \frac{1}{2}) }^{0}  \\  {x}^{2}  - x - 20 = 0 \\ d = 1 + 80 = 81 \\ x1 = (1 + 9) \times 2 = 5 \\ x2 =  - 4

3) =  {( \frac{1}{5}) }^{ {x}^{2}  + x - 12}  = 1 \\  {x}^{2}   + x - 12 = 0 \\ d = 1 + 48 = 49 \\ x1 = 3 \\ x2 =  - 4

4) \frac{x - 2}{x + 3}  = 0 \\ x = 2

5) \frac{x + 3}{x - 4}  = 0 \\ x =  - 3

6) {7}^{x - 2}  =  {5}^{x - 2}  \\  \frac{ {7}^{x - 2} }{ {5}^{x - 2} }  = 1 \\  {( \frac{7}{5} )}^{x - 2}  = 1 \\ x - 2 = 0 \\ x = 2

7) \frac{ {5}^{x - 4} }{ {10}^{x - 4} }  = 1 \\ x - 4 = 0 \\x = 4

8) {2}^{2 {x}^{2}  - 3x - 2}  = 1 \\ 2 {x}^{2}  - 3x - 2 = 0 \\ d = 9 + 16 = 25 \\ x1 = (3 + 5) \div 4 = 2 \\ x2 =  -  \frac{1}{2}

9) {3}^{ {x}^{2} - 2x }  =  {3}^{3}  \\  {x}^{2}  - 2x = 3 \\  {x}^{2}  - 2x - 3 = 0 \\ d = 4 + 12 = 16 \\ x1 = 3 \\ x2 =  - 1

10) {5}^{ {x}^{2}  - x}  =  {5}^{2}  \\  {x}^{2}  - x = 2 \\  {x}^{2}  - x - 2 = 0 \\ d = 1 + 8 = 9 \\ x1 = 2 \\ x2 =  - 1

11) {5}^{ \frac{x}{x - 2} }  =  \frac{1}{25}  \\  {5}^{ \frac{x}{x - 2} }  =  {5}^{ - 2}  \\  \frac{x}{x - 2}  =  - 2 \\ x =  - 2(x - 2) \\ x =  - 2x + 4 \\ 3x = 4 \\ x =  \frac{4}{3}


teploodetaya: Спасибо большое
Вас заинтересует