• Предмет: Математика
  • Автор: alisa4818
  • Вопрос задан 2 года назад

40 балов! Помогите!
Решите уравнение сtgx=√3 (-3π/2;5π/2)​

Ответы

Ответ дал: matilda17562
1

Ответ:

- 5/6π; π/6; 1 1/6π; 2 1/6π.

Пошаговое объяснение:

сtgx = √3

х = arcctg √3 + πn, гле n ∈ Z

х = π/6 + πn, гле n ∈ Z

Найдём те решения, которые попадают промежуток (-3π/2 ; 5π/2):

если n = - 2, то х = π/6 - 2π = - 1 5/6π - не лежит в указанном промежутке;

если n = - 1, то х = π/6 - π = - 5/6π - лежит в указанном промежутке;

если n = 0, то х = π/6 - лежит в указанном промежутке;

если n = 1, то х = π/6 + π = 1 1/6π - лежит в указанном промежутке;

если n = 2, то х = π/6 + 2π = 2 1/6π - лежит в указанном промежутке;

если n = 3, то х = π/6 + 3π = 3 1/6π - не лежит в указанном промежутке.

Ответ:

- 5/6π; π/6; 1 1/6π; 2 1/6π.

Вас заинтересует