• Предмет: Алгебра
  • Автор: Nurzhan94
  • Вопрос задан 3 года назад

Найдите f"(x) вторая производная функция

Приложения:

Ответы

Ответ дал: Miroslava227
0

Ответ:

5)

f'(x) = 2(x  + 1) \times  \cos(2x)  + ( -   \sin(2x)  ) \times 2 \times  {(x + 1)}^{2}  =  \\  =2 (x + 1) \times ( \cos(2x)  - (x + 1) \sin(2x) )

f''(x) = 2( \cos(2x)  - (x + 1) \sin(2x) )  + 2(x + 1)( - 2 \sin(2x)  -  \sin(2x)  - (x + 1) \times 2 \cos(2x) ) = \\   = 2 \cos(2x)  - 2x \sin(2x)  - 2 \sin(2x)  - 4x  \sin(2x)   - 4 \sin(2x)  - 2 \sin(2x)  - 4x \cos(2x)  - 4 \cos(2x)  =  \\  =  - 2 \cos(2x)  - 6 \sin(2x)  - 6x \sin(2x)  - 4x \cos(2x)

6)

f'(x) = 1 \times  \cos( {x}^{2} + 1 )  -  \sin( {x}^{2}  + 1)  \times 2x \times x =  \\  =  \cos( {x}^{2}  + 1)  - 2   {x}^{2}  \sin( {x}^{2}  + 1)

f''(x) =  - 2x \sin( {x}^{2}  + 1) - 4x \sin( {x}^{2} +1  )  -  2 {x}^{2}  \times  \cos( {x}^{2}  + 1)  \times 2x = 2x \sin( {x}^{2} + 1 )  - 4 {x}^{3}  \cos(  {x}^{2} + 1  )

Ответ дал: Universalka
0

5)f(x)=(x+1)^{2} Cos2x\\\\f'(x)=[(x+1)^{2}]'*Cos2x+(x+1)^{2}*(Cos2x)'= \\\\=2(x+1)*Cos2x-(x+1)^{2}*2Sin2x=2[(x+1)Cos2x-(x+1)^{2}Sin2x)]\\\\f''(x)=2[(x+1)'Cos2x+(x+1)*(Cos2x)'-[(x+1)^{2}]'Sin2x-(x+1)^{2}(Sin2x)']=\\\\=2[Cos2x-2(x+1)Sin2x-2(x+1)Sin2x-(x+1)^{2}*2Cos2x]=\\\\=2(Cos2x-4(x+1)Sin2x-2(x+1)^{2}Cos2x)

6)f(x)=xCos(x^{2}+1)\\\\f'(x)=x'*Cos(x^{2}+1)+x*(Cos(x^{2}+1))'=Cos(x^{2}+1)-x*2xSin(x^{2}+1)=\\\\=Cos(x^{2}+1)-2x^{2} Sin(x^{2}+1)\\\\f''(x)=[Cos(x^{2}+1)]'- 2[(x^{2})'*Sin(x^{2}+1)+x^{2}*(Sin(x^{2}+1))'] =\\\\=-2xSin(x^{2}+1)-2(2xSin(x^{2}+1)+2x^{3}Cos(x^{2}+1)=\\\\=-2xSin(x^{2}+1)-4xSin(x^{2}+1)-4x^{3}Cos(x^{2}+1)=\\\\ -6xSin(x^{2}+1)-4x^{3}Cos(x^{2}+1)

Вас заинтересует