• Предмет: Математика
  • Автор: rjyabuehfwbz00
  • Вопрос задан 3 года назад

Найти первую производную x y' заданных функций:

Приложения:

Ответы

Ответ дал: Miroslava227
0

Ответ:

1)

y =  \frac{4 + 3 {x}^{2} }{x \times  \sqrt[3]{ {(2 +  {x}^{3} )}^{2} } }  \\

С помощью логарифмической производной:

y' = ( ln(y)) ' \times y \\

( ln(y))'  = ( ln( \frac{4 + 3 {x}^{2} }{x \sqrt[3]{ {(2 +  {x}^{3} )}^{2} } } ) ' =  \\  = ( ln(4 + 3 {x}^{2} )  -  ln(x)  -  ln( {(2 +  {x}^{3}) }^{ \frac{2}{3} } ) ) '=  \\  =  \frac{6x}{4 + 3 {x}^{2} }  -  \frac{1}{x}  -  \frac{2 \times 3 {x}^{2} }{3(2 +  {x}^{2}) }  =  \\  =  \frac{18{x}^{2}(2 +  {x}^{3} ) - 3(2 +  {x}^{3})(4 + 3 {x}^{2}) -   6 {x}^{3}(4 + 3 {x}^{2} )  }{3x(4 + 3 {x}^{2})(2 +  {x}^{3})  }  =  \\  =  \frac{3( - 3 {x}^{5} - 12 {x}^{3} + 6 {x}^{2}   - 8) }{3x(4 + 3 {x}^{2} )(2 +  {x}^{3}) }  =  \\  =  -  \frac{3 {x}^{5}  + 12 {x}^{3}  - 6 {x}^{2} + 8 }{x(4 + 3 {x}^{2} )(2 +   {x}^{3})  }

y =  \frac{4 + 3 {x}^{2} }{x \times  {(2 +  {x}^{3} )}^{   \frac{2}{3} } }  \times ( -  \frac{3 {x}^{5} + 12 {x}^{3} - 6 {x}^{2}   + 8 }{x(4 + 3 {x}^{2})(2 +  {x}^{3})  } ) =  \\  =  -  \frac{3 {x}^{5} + 12 {x}^{3}  - 6 {x}^{2}    + 8}{ {x}^{2}   \sqrt[3]{ {(2 +  {x}^{3}) }^{5} } }

б)

y' = 3 {ln}^{2} (1 +  \cos(x))  \times  \frac{1}{1 +  \cos(x) } ( -  \sin(x)) + \frac{1}{6}  \times   \frac{27 {e}^{x} {( {e}^{x} + 1) }^{3} - 3 {( {e}^{x}  + 1)}^{2} \times  {e}^{x}  \times (27 {e}^{x}    + 11) }{ {( {e}^{x} + 1) }^{6} }   =  \\  =  -  \frac{ 3 \sin(x) {ln}^{2}(1 +  \cos(x))   }{1 +  \cos(x) }  +  \frac{1}{6}  \times  \frac{ {(1 +  {e}^{x}) }^{2}  {e}^{x} (27 ( {e}^{x}  + 1) - 3(27 {e}^{x} + 11)) }{ {( {e}^{x} + 1) }^{6} }  =  \\  =  -  \frac{3 \sin(x) {ln}^{2} (1 +  \cos(x))  }{1 +  \cos(x) }  +  \frac{1}{6}  \times  \frac{ {e}^{x} (27 {e}^{x}  + 27 - 81 {e}^{x} - 33 )}{ {( {e}^{x} + 1) }^{4} }  =  \\  =  -  \frac{3 \sin(x) {ln}^{2}(1 +  \cos(x))   }{1 +  \cos(x) }  +  \frac{ {e}^{x} ( - 54 {e}^{x}  - 6)}{6 {( {e}^{x}  + 1)}^{4} }  =  \\  =  -  \frac{3 \sin(x) {ln}^{2}(1 +  \cos(x))   }{1 +  \cos(x) }  -  \frac{ {e}^{ x } (9 {e}^{x} + 1) }{ {( {e}^{x}  + 1)}^{2} }

в)

y' =  -  \sin(ctg2)  -  \frac{1}{16}  \times  \frac{2 \cos(8x)    \times ( -  \sin(8x))  \times 8 \times  \sin(16x)  - 16 \cos(16x) \times  { \cos }^{2}  (8x)}{ { \sin}^{2}(16x) }  =  \\  =  -  \sin(ctg2)  -   \frac{ - 8 \sin(16x) \times  \sin(16x)   - 16 \cos(16x)  { \cos}^{2}(8x) }{ {16 \sin }^{2}(16x) }  =  \\  =  -  \sin(ctg2)  +  \frac{1}{2}  +  \frac{ \cos(16x)  { \cos }^{2}(8x) }{ { \sin }^{2} (16x)}  =  \\  =  \frac{1}{2}  -  \sin(ctg2)  +  \frac{ { \cos}^{2}(8x) ctg(16x)}{ \sin(16x) }

г)

y' =  \frac{1}{2} ( \sqrt{8x -  {x}^{2} -7 }  + (x - 4) \times  \frac{1}{2}  {(8x -  {x}^{2}  - 7)}^{ -  \frac{1}{2} }  \times (8 - 2x)) + 9 \times  \frac{1}{ \sqrt{1 -  \frac{x - 1}{6} } }  \times  \frac{1}{6}  =  \\  =  \frac{ \sqrt{8x -  {x}^{2}  - 7 } }{2} +   \frac{(x - 4)(4 - x)}{2 \sqrt{8x -  {x}^{2} - 7 } }  +  \sqrt{ \frac{6}{6 - x + 1} }  \times  \frac{1}{6}  =  \\  =  \frac{ \sqrt{8x -  {x}^{2} - 7 } }{2}  -  \frac{ {(x - 4)}^{2} }{2 \sqrt{8x -  {x}^{2} - 7 } }  +   \frac{1}{ \sqrt{6(7 - x)} }

Вас заинтересует