Равносильные уравнения. Линейное уравнение с одной переменной. Решение линейных уравнений с одной переменной. Урок 2
При каких значениях a, b линейное уравнение a · x = b не имеет решения?
a = 0, b ≠ 0
a ≠ 0, b = 0
a = 0, b = 0
a ≠ 0, b ≠ 0
Назад
Проверить
Аноним:
ответ a = 0, b ≠ 0 у кого реклама ;D
a = 0, b ≠ 0
для тех у кого реклама )
спасибо челу из коментов
Ответы
Ответ дал:
4
Ответ:
a = 0, b ≠ 0
Пошаговое объяснение:
1) a = 0, b ≠ 0, тогда уравнение превратится в
0 · x = b, то есть 0=b , где b отлично от нуля - чего быть не может - значит решений нет.
2) a = 0, b = 0 - тогда уравнение превратится в
0 · x = 0, то есть 0=0 , что верно при любом x.
3) a ≠ 0 (b может быть равно или не равно нулю)
Тогда от исходного уравнения a · x = b можно перейти к равносильному
x = b/a - это значение x и будет решением.
Итого решений нет только в случае a = 0, b ≠ 0
Вас заинтересует
2 года назад
8 лет назад
8 лет назад
9 лет назад