• Предмет: Математика
  • Автор: sharik2212
  • Вопрос задан 3 года назад

Сколько различных четырехзначных чисел можно создать из цифр 1; 2; 3; 4; 5; 6; 7; 8; 9, если цифры могут повторяться и число должно быть четным?

Ответы

Ответ дал: cashpass01
1

Ответ:

Чтобы создать четырехзначное число, необходимо выбрать 4 позиции - первая цифра, вторая цифра, тд...

Позиции заполняются с конца, потому что деление на 2 определяется последней цифрой - это должна быть четная цифра 2; 4; 6; 8.

В последней позиции всего 4 варианта, так как даны только 4 четные цифры.

Остальные позиции имеют 9 вариантов, так как теперь вы можете выбрать любое число.

9⋅9⋅9⋅4 = 2916 типов.

Вас заинтересует