• Предмет: Алгебра
  • Автор: marinayarosh1984
  • Вопрос задан 2 года назад

Срочнооо!!!! Прошу помогите
Вариант В1

Приложения:

Ответы

Ответ дал: filuksistersp735lh
1

1.

а)

 \frac{sin \frac{3\pi}{4}cos \frac{\pi}{12} + cos\frac{3\pi}{4} sin \frac{\pi}{12}  }{ \sin15°}  = \\  =  \frac{ \sin( \frac{3\pi}{4}  +  \frac{\pi}{12} ) }{sin45° - 30°}    =  \\ =  \frac{sin \frac{5\pi}{6} }{sin45°cos30° - cos45°sin30°}  =  \\  =  \frac{ \sin(\pi -  \frac{\pi}{6} ) }{ \frac{ \sqrt{2} }{2}  \times  \frac{ \sqrt{3} }{2} -  \frac{ \sqrt{2} }{2}  \times  \frac{1}{2}  }  =  \\  =  \frac{ \sin\frac{\pi}{6}  }{  \frac{1}{2}  ( \sqrt{6}  -  \sqrt{2} )}  =  \frac{ \frac{1}{2} }{ \frac{1}{2} ( \sqrt{6}  -  \sqrt{2}) }  =  \\  =  \frac{1}{ \sqrt{6}  -  \sqrt{2} }  =  \frac{ \sqrt{6} +  \sqrt{2}  }{4}  \\

б)

cos \alpha  =  -  \sqrt{ \frac{1}{1 +  {tg}^{2} \alpha  } }  = \\  =   -  \sqrt{ \frac{1}{1 +  \frac{1}{3} } }  =  -  \sqrt{ \frac{3}{4} } =  -  \frac{ \sqrt{3} }{2}  \\  \alpha  = arccos( -  \frac{ \sqrt{3} }{2}) = \\  =  \pi - arccos \frac{ \sqrt{3} }{2} = \pi -  \frac{\pi}{6}  =  \frac{5\pi}{6}

cos \alpha  =  -  \sqrt{ \frac{1}{1 +  {tg}^{2} \alpha  } }  = \\  =   -  \sqrt{ \frac{1}{1 +  \frac{1}{3} } }  =  -  \sqrt{ \frac{3}{4} } =  -  \frac{ \sqrt{3} }{2}  \\  \alpha  = arccos( -  \frac{ \sqrt{3} }{2}) = \\  =  \pi - arccos \frac{ \sqrt{3} }{2} = \pi -  \frac{\pi}{6}  =  \frac{5\pi}{6}     \cos( \frac{\pi}{6} +  \alpha  )  =  \cos( \frac{\pi}{6} +  \frac{5\pi}{6}  )  = cos\pi =  - 1

2.

а). { \cos( \frac{\pi}{12 }  +  \alpha ) \cos( \frac{ 5\pi}{12 }   -   \alpha )- \sin( \frac{\pi}{12 }  +  \alpha ) \sin( \frac{5\pi}{12 }   -   \alpha )} =0 \\  \cos( \frac{\pi}{12} +  \alpha  +  \frac{5\pi}{12} -  \alpha   )  = 0 \\  \cos \frac{\pi}{2} = 0 \\ 0 = 0

б)

 \sin( \alpha -   \beta )  \sin( \alpha   + \beta )  =  { \sin }^{2}  \alpha  -  {sin}^{2}  \beta  \\( sin \alpha  \: cos \beta  - cos \alpha \: sin \beta )(sin \alpha  \: cos \beta   + cos \alpha \: sin \beta) = { \sin }^{2}  \alpha  -  {sin}^{2}  \beta  \\{ \sin }^{2}  \alpha    \: {cos}^{2}  \beta - {cos}^{2}   \alpha  \:  {sin}^{2}  \beta   = { \sin }^{2}  \alpha  -  {sin}^{2}  \beta   \\ {\sin }^{2}  \alpha(1 - {\sin }^{2}   \beta ) - {\sin }^{2}   \beta ( 1 - {\sin }^{2}  \alpha) = {\sin }^{2}  \alpha - {\sin }^{2}   \beta  \\ {\sin }^{2}  \alpha - {\sin }^{2}  \alpha{\sin }^{2}   \beta  - {\sin }^{2}   \beta  + {\sin }^{2}  \alpha{\sin }^{2}   \beta  = {\sin }^{2}  \alpha - {\sin }^{2}   \beta  \\  {\sin }^{2}  \alpha - {\sin }^{2}   \beta= {\sin }^{2}  \alpha - {\sin }^{2}   \beta

3.

ctg \alpha  =  \frac{1}{3}  \\tg(  \alpha   + \beta ) = 1 \\ tg  \alpha  =  \frac{1}{ctg  \alpha }  =  \frac{1}{ \frac{1}{3} }  = 3 \\ tg( \alpha +   \beta ) =  \frac{tg \alpha  + tg \beta }{1 - tg \alpha  \: tg \beta }  \\  \frac{3 + tg \beta }{1 - 3tg \beta }  = 1 \\ 3 + tg \beta  = 1 - 3tg \beta  \\ 4tg \beta  =  - 2 \\ tg \beta  = -  \frac{2}{4}  =   -  \frac{1}{2}  \\ ctg \beta  =  \frac{1}{tg \beta }  =  \frac{1}{  - \frac{1}{2} }  =  - 2

Вас заинтересует