Найдите косинус острого угла между прямыми AC и BD , если даны координаты точек: A (-1;0); B (5;-2); C (2;3); D (3;6)
Ответы
Ответ дал:
8
Даны координаты точек: A (-1;0); B (5;-2); C (2;3); D (3;6).
Находим векторы:
АС = (2-(-1); 3-0) =(3; 3), модуль равен √(3² + 3²) = √18 =3√2.
BD = (3-5); 6-(-2)) =(-2; 8), модуль равен √((-2)² + 8²) = √68 = 2√17.
Находим косинус угла между этими прямыми:
cos (AC_BD) = (3*(-2) + 3*8)/(3√2*2√17) = 3√34/34.
То, что найден косинус острого угла(пусть А), проверяем по его величине.
A = arc cos(3√34/34) = 59,03624 градуса.
Аноним:
помогите пожалуйста с геометрией, прошу
https://znanija.com/task/42274504?utm_source=android&utm_medium=share&utm_campaign=question
https://znanija.com/task/42274829?utm_source=android&utm_medium=share&utm_campaign=question
Вас заинтересует
1 год назад
1 год назад
2 года назад
2 года назад
7 лет назад
7 лет назад
9 лет назад