• Предмет: Геометрия
  • Автор: pavlenkomisha2005
  • Вопрос задан 2 года назад

Помогите пожалуйста срочно дам 25 балов



Через сторону ВС трикутника АВС проведено площину, яка утворюе з площиною трикутника кут 60°. Знайдіть відстань від вершини А до цієї площини, якщо АВ=ВС=13 см, АС=10 см.

Ответы

Ответ дал: arinasidorova97
1

Ответ:

Сначала решение, а потом немного пояснений :)))

Расстояние от С до плоскости равно расстоянию от С до прямой АВ, умноженному на синус угла 45°, высота треугольника АВС, проведенная из вершины С, равна 12, поэтому ответ 6√2;

Теперь пояснения :)

1. Отрезок, перпендикулярный плоскости СК (точка К - проекция точки С на плоскость), высота СН треугольника АВС и её проекция на плоскость КН образуют прямоугольный треугольник СКН в плоскости, перпендикулярной АВ (так как 2 прямые - СК и СН перпендикулярны АВ). Поэтому СК = СН*sin(Ф); где Ф - линейный угол двугранного угла между плоскостями, то есть 45°;

2. Чтобы найти СН - высоту треугольника АВС, можно сосчитать площадь АВС по формуле Герона (получится 84) и разделить на (14/2), получится 12. Однако есть способ найти СН, не прибегая к вычислениям. Дело в том, что треугольник со сторонами 13,14,15 "составлен" из двух Пифагоровых треугольников (прямоугольных треугольников с целыми длинами сторон) 9,12,15 и 5,12,13 так, что катет 12 у них "общий", а катеты 9 и 5 вместе образуют сторону 14. Что означает, что в треугольнике 13,14,15 высота к стороне 14 равна 12.


pavlenkomisha2005: В рисунок можно?
arinasidorova97: прости не могу
Вас заинтересует