• Предмет: Математика
  • Автор: shukhovtsev2020
  • Вопрос задан 2 года назад

!!!СРОЧНО!!!
ПОМОГИТЕ ПОЖАЛУЙСТА
ДАМ 50 БАЛЛОВ

Приложения:

Ответы

Ответ дал: Miroslava227
1

Ответ:

1.

2

150^{\circ} = 90^{\circ} +  \alpha  \\  \alpha  = 150^{\circ} - 90^{\circ} = 60^{\circ}

4

310^{\circ} = 270^{\circ} +  \alpha \\   \alpha  = 310^{\circ} - 270^{\circ} = 40^{\circ}

6

 \frac{\pi}{5}  =  \frac{\pi}{2}   - \alpha  \\  \alpha  =   \frac{\pi}{2}  - \frac{\pi}{5}  =  \frac{5 - 2}{10}  \pi=  \frac{3\pi}{10}

8

 \frac{11\pi}{6}  = 2\pi  - \alpha  \\  \alpha  = 2\pi   -  \frac{11\pi}{6}  =  \frac{\pi}{6}

2.

5

 \cos(225^{\circ})  =  \cos(180^{\circ} + 45^{\circ}) =  -  \cos(45^{\circ})   =  -  \frac{ \sqrt{2} }{2}  \\

6

 \sin(210^{\circ})  =  \sin(180^{\circ} + 30^{\circ})  =  -  \sin(30^{\circ})  =  -  \frac{1}{2}  \\

7

ctg(240^{\circ}) = ctg(270^{\circ} - 30^{\circ}) = tg(30^{\circ}) =  \frac{ \sqrt{3} }{3}  \\

8

 \sin(315^{\circ})  =  \sin(360^{\circ} - 45^{\circ})  =  -  \sin(45^{\circ})  =  -  \frac{ \sqrt{2} }{2}  \\

1

tg \frac{5\pi}{4}  = tg(\pi +  \frac{\pi}{4} ) = tg \frac{\pi}{4} = 1 \\

2

 \sin( \frac{7\pi}{6} )  =  \sin( \pi+  \frac{\pi}{6} )  =  -  \sin( \frac{\pi}{6} )  =  -  \frac{1}{2}  \\

3

 \cos( \frac{5\pi}{3} )  =  \cos( 2\pi - \frac{\pi}{3} )  =  \cos( \frac{\pi}{3} )  =  \frac{1}{2}  \\

4

ctg \frac{5\pi}{3}  = ctg(2\pi -  \frac{\pi}{3} )  -  ctg \frac{\pi}{3}  =  -  \frac{ \sqrt{3} }{3}  \\

3.

2

 \cos(  \frac{\pi}{4}  - \beta )  -  \cos( \frac{\pi}{4}  +  \beta )  =  \\  =  \cos( \frac{\pi}{4} )  \cos( \beta )  +  \sin( \frac{\pi}{4} )  \sin( \beta )  -  \cos( \frac{\pi}{4} )  \cos( \beta )   + \sin( \frac{\pi}{4} )  \sin( \beta )  =  \\  = 2 \sin( \frac{\pi}{4} )  \sin( \beta )  = 2 \times  \frac{ \sqrt{2} }{2}  \sin( \beta ) =  \sqrt{2}   \sin( \beta )

4

 \cos {}^{2} ( \alpha  -  \frac{\pi}{4} )  -  \cos {}^{2} ( \alpha  +  \frac{\pi}{4} )  =  \\  =  {( \cos( \alpha )  \cos( \frac{\pi}{4} )   +  \sin( \alpha )  \sin( \frac{\pi}{4} ) )}^{2}  -  {( \cos( \alpha )  \cos( \frac{\pi}{4} )  -  \sin( \alpha )  \sin( \frac{\pi}{4} ) )}^{2}  =  \\  =  {( \frac{ \sqrt{2} }{2} \cos( \alpha )   +  \frac{ \sqrt{2} }{2} \sin( \alpha )  )}^{2}   -  {( \frac{ \sqrt{2} }{2}  \cos( \alpha )  -  \frac{ \sqrt{2} }{2}  \sin( \alpha ) )}^{2}  =  \\  =  \frac{1}{2}  {(  \cos( \alpha ) +  \sin( \alpha ) )}^{2}  -  \frac{1}{2}  {(  \cos( \alpha ) -  \sin( \alpha ) )}^{2}  =  \\  =  \frac{1}{2} ( \cos( \alpha )  +  \sin( \alpha )  -  \cos( \alpha )  +  \sin( \alpha ) )( \cos( \alpha )   + \sin( \alpha )  +  \cos( \alpha )  -  \sin( \alpha ))  =  \\  =  \frac{1}{2}  \times 2 \sin( \alpha )  \times 2 \cos( \alpha )  =  \sin(2 \alpha )

4.

2

 \sin(105^{\circ})  -  \sin(75^{\circ})  = \\  =  2 \sin( \frac{105^{\circ} - 75^{\circ}}{2} )  \cos( \frac{105^{\circ} + 75^{\circ}}{2} )  = \\   = 2 \sin(15^{\circ})  \cos(90^{\circ})  = 0

4

 \cos( \frac{11\pi}{12} )  -  \cos( \frac{5\pi}{12} )  =  \\  =  - 2 \sin( \frac{1}{2}( \frac{11\pi}{12}  -  \frac{5\pi}{12} ) )  \sin( \frac{1}{2} ( \frac{11\pi}{12}  +  \frac{5\pi}{12} ) ) =  \\  =  - 2 \sin( \frac{\pi}{4} )  \times  \sin( \frac{2\pi}{3} )  =  - 2 \times  \frac{ \sqrt{2} }{2}  \times  \frac{ \sqrt{3} }{2}  =  -  \frac{ \sqrt{6} }{2}

6

 \sin(105^{\circ})   + \sin(165^{\circ})  =  \\  = 2 \sin( \frac{105^{\circ} + 165^{\circ}}{2} )  \cos( \frac{105^{\circ} - 165^{\circ}}{2} )  =  \\  = 2 \sin(135^{\circ})  \cos(30^{\circ})  = 2 \sin(180^{\circ} - 45^{\circ})  \cos(30^{\circ})  =  \\  = 2 \sin(45^{\circ})  \times  \frac{ \sqrt{3} }{2}  = 2 \times  \frac{ \sqrt{2} }{2}  \times  \frac{ \sqrt{3} }{2}  =  \frac{ \sqrt{6} }{2}


Аноним: аааааааааааааааауууууу
Вас заинтересует