• Предмет: Математика
  • Автор: ravilkamelov
  • Вопрос задан 2 года назад

помогите с производными, 1 и 2 задание, дам 50 баллов!

Приложения:

Ответы

Ответ дал: Miroslava227
0

Ответ:

1

a

y '=  \frac{(2 +  {x}^{2}) '\times  \sqrt{1 +  {x}^{2} }   - ( \sqrt{1 +  {x}^{2} } )'  \times (2 +  {x}^{2} )}{ (\sqrt{1 +  {x}^{2} }) {}^{2}  }  =  \\  =  \frac{2x \sqrt{1 +  {x}^{2}} -  \frac{1}{2 \sqrt{1 +  {x}^{2}  }   } \times 2x \times (2 +  {x}^{2} ) }{1 +  {x}^{2} }  =  \\  =  \frac{2x \sqrt{1 +  {x}^{2} }  -  \frac{x(2 +  {x}^{2}) }{ \sqrt{1 +  {x}^{2} } } }{1 +  {x}^{2} }  =  \\  =  \frac{2x}{ \sqrt{1 +  {x}^{2} } }  -  \frac{2x +  {x}^{3} }{ \sqrt{ {(1 +  {x}^{2}) }^{3} } }

б

y '= ( {5}^{4x} ) '\times  { \cos }^{3} (7x - 1) + ( \cos {}^{3} (7x - 1) )'  \times  {5}^{4x}  =  \\  =  ln(5)  \times  {5}^{4x}  \times 4 \times  \cos {}^{3} (7x - 1)  + 3  \cos {}^{2} (7 x - 1)  \times ( - \sin(7x - 1))  \times 7 \times  {5}^{4x}  =  \\  =  {5}^{4x}  \cos {}^{2} (7x - 1)  \times (4 ln(5)  \times  \cos(7x - 1)  - 21 \sin(7x - 1))

в

y '= 6 {( {tg}^{2} (3x) - 4)}^{5}  \times ( {tg}^{2} (3x) - 4)' =  \\  = 6 {( {tg}^{2}(3x) - 4 )}^{5}  \times (2tg(3x) \times  \frac{3}{ \cos {}^{2} (3x) } ) =  \\  =  \frac{18tg( 3 x)}{ \cos {}^{2} (3x) }  {( {tg}^{2} (3x) - 4)}^{5}

г

y =  { (\cos(x)) }^{ \sin(x) }

y '= ( ln(y)) ' \times y

( ln(y) )'  = ( ln( {( \cos(x)) }^{ \sin(x) } )'  = ( \sin(x)  ln( \cos(x) ) ) '=  \\  =  \cos(x) \times   ln( \cos(x) )  +  \frac{1}{ \cos(x) }   \times \sin(x)  \sin(x)  =  \\  =  \cos(x)  \times  ln( \cos(x) )  + tg(x) \sin(x)

y' =  {(   \cos(x)  )}^{ \sin(x) }  \times ( \cos(x) ln( \cos(x) )  + tg(x) \sin(x) ) \\

д

arctgy =  \frac{x}{y}  \\  \frac{1}{1 +  {y}^{2} }  \times y' =  \frac{x'y - y'x}{ {y}^{2} }  \\  \frac{y'}{1 +  {y}^{2} }  =  \frac{y - y'x}{ {y}^{2} }  \\  \frac{y'}{1 +  {y}^{2} }  =  \frac{1}{y}  -  \frac{y'x}{ {y}^{2} }  \\  \frac{y'}{1 +  {y}^{2} }  +  \frac{y'x}{ {y}^{2} }  =  \frac{1}{y}  \\ y'( \frac{1}{1 +  {y}^{2} }  +  \frac{x}{ {y}^{2} } ) =  \frac{1}{y}  \\ y '\times  \frac{ {y}^{2} + x(1 +  {y}^{2})  }{ {y}^{2}(1 +  {y}^{2})  }  =  \frac{1}{y}   \\ y' =  \frac{1}{y}  \times  \frac{ {y}^{2}(1 +  {y}^{2} ) }{ {y}^{2} + x + x {y}^{2}  }  \\ y '=  \frac{y +  {y}^{3} }{x +  {y}^{2}  + x {y}^{2} }

2.

y'_x =  \frac{y'_t}{x'_t}  \\  \\ y'_t = 1 -  \frac{1}{ \sin(t) }   \times  \cos(t)  = 1 - ctg(t) \\ x'_t = 1 +  \frac{1}{ \cos(t) }  \times (   -  \sin(t))  = 1 - tg(t)

y'_x =  \frac{1 - ctgt}{1 - tgt}  =  \frac{1 - \frac{ \cos(t) }{ \sin(t) }  }{1 -  \frac{ \sin(t )}{ \cos(t) } }  =  \\  =  \frac{ \sin(t)   - \cos(t) }{ \sin(t) }  \times  \frac{ \cos(t) }{ \cos(t)   - \sin(t) }  =  \\  =  -  \frac{ \cos(t) }{ \sin(t) } =  -  ctg(t)

y''_{xx} =  \frac{(y'_x)'_t}{x'_t}  \\

(y'_x)'_t =  - ( -  \frac{1}{ \sin {}^{2} (t) } ) =  \frac{1}{ \sin {}^{2} (t) }  \\

y''_{xx} =  \frac{1}{ \sin {}^{2} (t) }  \times  \frac{1}{1 - tg(t)}  =  \\  =  \frac{1}{ \sin(t) }  \times  \frac{ \cos(t) }{ \cos(t)  - \sin(t)  }  =  \\  =  \frac{ctg(t)}{ \cos(t) -   \sin(t) }

Вас заинтересует