• Предмет: Алгебра
  • Автор: ruslangurov03
  • Вопрос задан 2 года назад

Решите дифференциальные уравнения. Любые 2 из этих 3 на картинке.

Приложения:

Ответы

Ответ дал: Wynneve
2

Ответ:

35.

y = \pm\sqrt{2e^x + C}.

37.

s = C\cos t;\\t = \pm\arccos (Cs).

39.

y = \frac14 \ln^2 |Cx|.\ \ (x \geq C^{-1}).

Объяснение:

35.

Данное уравнение — ДУ первой степени первого порядка с разделяющимися переменными. В исходном случае переменные уже разделены, поэтому можно непосредственно проинтегрировать обе части уравнения:

\int e^x \, \text{d}x = \int y \, \text{d}y;\\\int e^x\, \text{d}x = e^x + C.\\\int y\, \text{d}y = \frac12 y^2 + C.\\\frac12 y^2 + C = e^x + C;\\\frac12 y^2 = e^x + C;\\y^2 = 2e^x + C;\\y = \pm\sqrt{2e^x + C}.

Ответом будет являться найденная функция y.

37.

Данное уравнение — ДУ первой степени первого порядка с разделяющимися переменными. Разделим переменные:

\text{tg}\, t\, \text{d}t = - \frac{\text{d}s}{s}.

Теперь можно непосредственно проинтегрировать обе части уравнения:

\int \text{tg}\,t \, \text{d}t = - \int \frac{\text{d}s}{s};\\\int \text{tg}\,t \, \text{d}t = \int \frac{\sin t}{\cos t} \, \text{d}t = - \int \frac{\, \text{d}(\cos t)}{\cos t} = -\ln |\cos t| + C.\\\int \frac{\text{d}s}{s} = \ln |s| + C.\\-\ln |s| + C = -\ln |\cos t| + C;\\\ln |s| = \ln |C\cos t|;\\s = C\cos t;\\\cos t = Cs;\\t = \pm\arccos (Cs).

Не знаю, что здесь функция, а что переменная, так что в ответе будут в явном виде и s, как если бы переменной была t, и t, как если бы переменной была s.

39.

Данное уравнение — ДУ первой степени первого порядка с разделяющимися переменными. Разделим переменные:

\frac{dy}{\sqrt y} = \frac{dx}{x}.

Теперь можно непосредственно проинтегрировать обе части уравнения:

\int \frac{\text{d}y}{\sqrt y} = \int \frac{\text{d}x}{x};\\\int \frac{\text{d}y}{\sqrt y} = \int y^{-\frac12}\, \text{d}y = \frac{y^\frac12}{\frac12} = 2\sqrt y + C;\\\int \frac{\text{d}x}{x} = \ln|x| + C.\\2\sqrt y = \ln |x| + C;\\\sqrt y = \frac12 \ln|Cx|;\\y = \frac14 \ln^2 |Cx|.\ \ (x \geq C^{-1}).

Ответом будет являться найденная функция y с условием.

Вас заинтересует