• Предмет: Математика
  • Автор: ЮжныйПарк
  • Вопрос задан 3 года назад

Решите производные сложной функции!

Приложения:

Ответы

Ответ дал: Miroslava227
1

Ответ:

11

y =  ln( \cos(x) )  + 5 {e}^{ - 3x + 2} - 2

y '=  \frac{1}{ \cos(x) }  \times ( \cos(x)) ' + 5 {e}^{2 - 3x}  \times (2 - 3x) '=  \\  =   \frac{1}{ \cos(x) }   \times ( - \sin(x) ) + 5 {e}^{2 - 3x}  \times ( - 3) =  \\  =  - tgx - 15 {e}^{2 - 3x}

12

y = (3x + 1) ln( {x}^{2}  + 7)  + 6

y '= (3x + 1)' ln( {x}^{2}  + 7)  + ( ln( {x}^{2}  + 7))' (3x + 1) + 0 =  \\  = 3 ln( {x}^{2} + 7 )  +  \frac{1}{ {x}^{2}  + 7}  \times 2x(3x + 1) =  \\  = 3 ln( {x}^{2}  + 7)  +  \frac{6 {x}^{2} + 2x }{ {x}^{2}  + 7}

13

y = (5 {x}^{3}  - 4)arcsin(3x) +  {3}^{x}

y '= 15 {x}^{2}  \times arcsin(3x) +  \frac{1}{ \sqrt{1 - 9 {x}^{2} } }  \times 3 \times( 5 {x}^{3}  -  4) +  ln(3)  \times  {3}^{x}  =  \\  = 15 {x}^{2} arcsin(3x) +  \frac{15 {x}^{3}  - 12}{ \sqrt{1 - 9 {x}^{2} } }  -  ln(3)  \times  {3}^{x}

14

y =  \frac{ {e}^{2x} }{ \sin( {x}^{2}  - 1) }  \\

y '=  \frac{ ({e}^{2x} )'\sin( {x}^{2} - 1 )  - ( \sin( {x}^{2}  - 1))'  {e}^{2x}  }{ \sin {}^{2} ( {x}^{2} - 1 ) } =  \\  =  \frac{2 {e}^{2x}  \sin( {x}^{2}  - 1)  - \cos( {x}^{2}  - 1) \times 2x \times e {}^{2x}   }{ \sin {}^{2} ( {x}^{2} - 1 ) }   =  \\  =  \frac{ {e}^{2x}( \sin( {x}^{2} - 1 )   - 2x \cos( {x}^{2}  - 1)) }{ \sin {}^{2} ( {x}^{2} - 1 ) }

15

y =  \frac{ ln( \cos(x) ) }{ ln( 3 {x}^{4} + 1 ) }  \\

y' =  \frac{ \frac{1}{ \cos(x) }  \times ( -  \sin(x)) \times  ln(3 {x}^{4}  + 1) -  \frac{1}{3 {x}^{4}  + 1}   \times 12 {x}^{3}   ln( \cos(x) ) }{ {ln}^{2} (3 {x}^{4} + 1) }  =  \\  =  \frac{ - tgx ln(3 {x}^{4}  + 1)  -  \frac{12 {x}^{3} ln( \cos(x) )  }{3 {x}^{4}  + 1} }{ {ln}^{2} (3 {x}^{4}  + 1)}

16

y =  {tg}^{3} ( \cos( \sqrt{x} ) )

y '= 3 {tg}^{2} ( \cos( \sqrt{x} ) ) \times (tg \cos( \sqrt{x} ) ) '\times ( \cos( \sqrt{x} ) )' \times ( \sqrt{x} ) '=  \\  = 3 {tg}^{2} ( \cos( \sqrt{x} ) ) \times  \frac{1}{ \cos {}^{2} ( \cos( \sqrt{x} ) ) }  \times ( -  \sin( \sqrt{x} ) ) \times  \frac{1}{2 \sqrt{x} }  =  \\  =  -  \frac{3 \sin( \sqrt{x} )  {tg}^{2}( \cos( \sqrt{x)} )  }{2 \sqrt{x} \cos {}^{2} ( \cos( \sqrt{x} ) )  }

17

y =  {e}^{ctg2x} \sin(3x)

y' =  {e}^{ctg2x}  \times ( -  \frac{1}{ \sin {}^{2} (2x) } ) \times 2 \times  \sin(3x)  + 3 \cos(3x)  {e}^{ctg2x}  =  \\  =  {e}^{ctg2x} (3 \cos(3x)  -  \frac{2 \sin(3x) }{ \sin {}^{2} (2x) } )

18

y =  {6}^{2x - 1}  \cos( \sqrt{4 - x} )

y '=  ln(6)  \times  {6}^{2x - 1}  \times 2 \cos( \sqrt{4 - x} )  + ( -  \sin( \sqrt{4 - x} ) ) \times  \frac{1}{2 \sqrt{4 - x} }  \times ( - 1) \times  {6}^{2x - 1}  =  \\  =  {6}^{2x - 1} (2 ln(6)  \times  \cos( \sqrt{4 - x} )  +  \frac{ \sin( \sqrt{4 - x} ) }{2 \sqrt{4 - x} } )

19

y =  {( \sin(x)) }^{x}

По формуле:

y' = ( ln(y)) ' \times x

( ln(y))'  = ( ln( {( \sin(x)) }^{x} )'  = (x ln( \sin(x)) )'  =  \\  =  ln( \sin(x) )  + x \times  \frac{1}{ \sin(x) }  \cos(x)  =  \\  =  ln( \sin(x) )  + xctg(x)

y '=  {( \sin(x)) }^{x} ( ln( \sin(x) )  + xctg(x)) \\

20

y =  {( {x}^{3} + 2) }^{5x}

( ln(y)) ' = ( ln( {x}^{3} + 2 )  {}^{5x} )' =  \\  = (5x \times  ln( {x}^{3}  + 2))  '=  \\  = 5 ln( {x}^{3}  + 2)  + 5x \times  \frac{1}{ {x}^{3}  + 2}  \times 3 {x}^{2}  =  \\  = 5 ln( {x}^{3}  + 2)  +  \frac{15 {x}^{3} }{ {x}^{3}  + 2}

y' =  {( {x}^{3}  + 2)}^{5x} (5 ln( {x}^{3}  + 2)  +  \frac{15 {x}^{3} }{ {x}^{3} + 2 } ) \\

Вас заинтересует