• Предмет: Алгебра
  • Автор: kamilarakhmankulova0
  • Вопрос задан 3 года назад

один из корней квадратного уравнения равен 5, 3 Найдите другой корень и коэффициент 10x2-33x+c=0​

Ответы

Ответ дал: PashaMoroz1200
0

Ответ:

с=-106

Объяснение:

10x^2 - 33x + c = 0

Квадратное уравнение не приведённое. Чтобы применить теорему Виета, нужно поделить всё уравнение на 10.

10х^2 - 33x + c = 0 | :10

х^2-3,3х+с/10=0

Сумма корней квадратного уравнения по теореме Виета

x1 + x2 = 3,3

5,3 + x2 = 3,3

x2 = 3,3 - 5,3 = -2

Произведение корней по теореме Виета

х1 * х2 = с/10

5,3 * (-2) = с/10

-10,6 = с/10

с/10 = -10,6

с = -10,6*10

с = -106

Вас заинтересует