Сторона ромба равна 36, а тупой угол равен
120°. Высота ромба, опущенная из вершины
тупого угла на противоположную сторону, делит
её на два отрезка. Найдите длины этих отрезков.
Ответы
Ответ дал:
5
18 см, 18 см
Решение задания прилагаю
Приложения:
Ответ дал:
2
Ответ:
24.5
Объяснение:
Ромб ABCD
угл А = угл = С = 120°.
360 - 120 - 120 = 120 ÷ 2 = 60
Следует что угл В = угл D = 60° (острые углы).
AH - высота.
Рассмотрим триуг AHB.
угл BAH = 180° - 60° - 90° = 30°.
Отсюда следует что BH = 1/2 BC = 18° т.к. против угла 30° лежит сторона равная половине гипотенузы в прямоугольных треугольниках.
Вас заинтересует
2 года назад
2 года назад
2 года назад
2 года назад
8 лет назад
8 лет назад