• Предмет: Алгебра
  • Автор: xgamerxpowerp9qy5j
  • Вопрос задан 7 лет назад

найти частное решение уравнения d^2y/dx^2=dy/dx, y=2, dy/dx=1, при x =0​


mariagerasimova6: я не поняла это ^2 это тип степень
xgamerxpowerp9qy5j: да в квадрате
mariagerasimova6: сорян у меня не получается я может не так поняла

Ответы

Ответ дал: Miroslava227
2

Ответ:

y''= y'\\ y''- y' = 0 \\  \\ y =  {e}^{kx}  \\  \\ k {}^{2} -  k = 0 \\ k (k - 1) = 0\\ k_1 = 0 \\ k_2 = 1 \\  \\ y = C_1 {e}^{0}  + C_2 {e}^{x}  \\ y = C_1 + C_2 {e}^{x}

общее решение

y(0) = 2,y'(0) = 1

y = C_2e {}^{x}

\left \{ {{C_1 + C_2 = 2} \atop {1 = C_2} } \right. \\  \\ \left \{ {{C_2 = 1} \atop {C_1 = 1} } \right.

Ответ:

y = 1 + e {}^{x}

частное

Ответ дал: KUWERPO
0

Ответ:

2x+y= 5

3x+2y=12

= 5 - 2x

3x+ 2y=12

3x+2(5-2x)=12

x=- 2

y=5-2×(-2)

= 9

Объяснение:

x. y) (-2.9)

[2×(-2)+9

3×(-2)+2×9=12

5 = 5

12 = 12

(×, у) = (-2,9)

Отвеь. (-2, 9)

Вас заинтересует