• Предмет: Математика
  • Автор: semenpashutkin
  • Вопрос задан 7 лет назад

Автобус и грузовая машина, скорость которой на 18 км/ч больше скорости автобуса, выехали одновременно
навстречу друг другу из двух городов, расстояние между которыми — 720 км. Определи скорости автобуса и
грузовой машины, если известно, что они встретились через 5 ч. после выезда.
Ответ:
скорость автобуса — |
Км/ч;
скорость грузовой машины
Км/ч.​

Ответы

Ответ дал: ildar502020
0

Ответ:   63 км/час.  81 км/час.

Пошаговое объяснение:

Решение.

x км/час  - скорость автобуса. Тогда

x+18  км/час  - скорость грузовой машины.

------------------

Скорость сближения машин равно сумме их скоростей:

V сближения=x+x+18=2x+18 км/час.

---------------

s=Vt;  720=5*(2x+18);

10x+90=720;

10x=720-90;

10x=630;

x=63 км/час - скорость автобуса.

x+18=63+18=81 км/час - скорость грузовой машины.

------------------

Ответ:

скорость автобуса — 63 Км/ч;

скорость грузовой машины  81 Км/ч.​

Вас заинтересует