На рисунке изображен график производной функции f(x). Найдите абсциссу точки, в которой касательная к графику y=f(x) параллельна прямой y=2x-2 или совпадает с ней.
Подробно , пожалуйста
Приложения:
genius20:
На рисунке видно, что касательная равна двум при x=5. Значит, абсцисса равна пяти
Потому что угловой коэффициент прямой y=2x-2 равен двум, то есть равен производной (по формуле касательной y=y'(x_0)(x-x_0)+y_0)
Ответы
Ответ дал:
3
Ответ: .
Угловой коэффициент прямой у=2х-2 равен k=2 . Если касательная параллельна этой прямой или совпадает с ней , то их угловые коэффициенты равны.
Угловой коэффициент касательной к графику функции y=f(x) равен значению производной в точке касания, то есть .
На оси ординат находим значение у=2, проводим прямую, параллельную оси ОХ, и находим на графике функции точку М - точку пересечения графика с прямой у=2.
Далее Находим абсциссу точки М . Это и будет абсцисса точки, в которой касательная к графику функции y=f(x) параллельна прямой y=2x-2 или совпадает с ней.
Координаты точки М(5;2) , значит .
Приложения:
Вас заинтересует
2 года назад
2 года назад
3 года назад
8 лет назад
8 лет назад
9 лет назад