Вычислите объём прямой четырёхугольной пирамиды высотой 5 см, в основании которой лежит ромб со стороной 89 см и длиной одной из диагоналей 78 см.
Ответы
Ответ дал:
0
Ответ:
V=10400см³
Объяснение:
Диагонали ромба пересекаются перпендикулярно и точкой пересечения делятся пополам.
ВО=ВD/2=78/2=39см.
∆АОВ- прямоугольный треугольник.
По теореме Пифагора
АО=√(АВ²-ВО²)=√(89²-39²)=
=√(7921-1521)=√6400=80см.
АС=2*АО=2*80=160см.
S(ABCD)=½*BD*AC=½*160*78=6240 см²
V=⅓*S(ABCD)*SO=⅓*6240*5=10400см³
Приложения:
Вас заинтересует
2 года назад
2 года назад
3 года назад
3 года назад
8 лет назад
8 лет назад
9 лет назад