• Предмет: Алгебра
  • Автор: Аноним
  • Вопрос задан 7 лет назад

Помогите пожалуйста решить!!!
Если числа х1,х2..х5 , решение уравнения......то найдите ...​

Приложения:

Reqiuem10: 1.167304039
Reqiuem10: Это должно быть ответом.
MrSolution: В некоторых случаях уравнения пятой степени разрешимы в радикалах.
Reqiuem10: У данного рациональных корней нету.
Reqiuem10: https://www.tiger-algebra.com/drill/x~5-x-1=0/
Reqiuem10: Не знаю данный ответ устраивает или нет.
MrSolution: иррациональный есть
MrSolution: не думаю
Reqiuem10: Я просто в этом обще ноль, это какую тему для этого надо изучать?
Аноним: су как не задерживаем

Ответы

Ответ дал: yugolovin
5

Уравнение z^5-z+1=0;\ z_1,\ z_2,\ z_3,\ z_4,\ z_5 - корни этого уравнения.

Требуется вычислить выражение z_1^6+z_2^6+\ldots + z_5^6. Заметим, что для любого корня уравнения выполнено z_i^5=z_i-1\Rightarrow z_i^6=z_i^2-z_i,

поэтому сумма шестых степеней корней этого уравнения равна сумме вторых степеней минус сумма самих корней.

Теперь вступает в бой волшебник - великая теорема Виета. Вот ее формулировка, записанная в случае, когда старший коэффициент равен одному, а многочлен имеет пятую степень.

f(z)=z^5+ a_4z^4+a_3z^3+a_2z^2+a_1z+a_0;\ z_1,\ z_2,\ z_3,\ z_4,\ z_5 - его корни.  

1) Тогда z_1+z_2+z_3+z_4+z_5=-a_4 (сумма корней равна коэффициенту при четвертой степени, взятому с обратным знаком). В нашем случае этот коэффициент равен нулю, поэтому сумма корней равна нулю.

2) z_1z_2+z_1z_3+z_1z_4+z_1z_5+z_2z_3+z_2z_4+z_2z_5+z_3z_4+z_3z_5+z_4z_5=a_3 (сумма попарных произведений корней равна коэффициенту при третьей степени). В нашем случае этот коэффициент равен нулю, поэтому сумма попарных произведений корней равна нулю.

3) Сумма тройных произведений корней равна -a_2. В этой задаче нам это равенство не понадобится.

4) Сумма четверных произведений равна a_1. Это тоже нам не понадобится.

5) z_1z_2z_3z_4z_5=-a_0 (произведение корней равно свободному члену, взятому с обратным знаком). И это нам не понадобится.

Напоминаю, что мы уже доказали, что сумма корней равна нулю, остается разобраться с суммой квадратов корней. Напрямую теорема Виета ничего про эту сумму не говорит, но дело мастера боится. Имеем:

(z_1+z_2+\ldots+z_5)^2=z_1^2+z_2^2+\ldots +z_5^2+2\sum\limits_{i\not= j}z_iz_j

(то есть квадрат суммы равен сумме квадратов плюс удвоенная сумма попарных произведений - элементарное обобщение общеизвестной формулы (a+b)²=a²+b²+2ab). В нашем случае сумма корней и сумма попарных произведений корней равна нулю. Поэтому и сумма квадратов корней равна нулю.

А в общем случаен из теоремы Виета следовало бы, что

z_1^2+z_2^2+\ldots+z_5^2=a_4^2-2a_3.

Ответ: 0


Аноним: спасибо большое!!!!!
Вас заинтересует