ПОМОГИТЕ!!! СРОЧНО!!!!!
В остроугольном треугольнике ABC отмечены ортоцентр H и центр описанной окружности O. Лучи BH и CO пересекаются в точке P, а лучи CH и BO пересекаются в точке Q. Известно, что ∠APH=135∘. Найдите угол AQO, если угол C равен 40∘.
Ответы
Ответ дал:
2
Пошаговое объяснение:
AH - изогональ к AO отн < BAC
CH пересекает BO в точке Q
BH пересекает CO в точке P
=> по теоремме об изогоналях
AP - изогональ к AQ
<CAP = <BAQ = α
тогда т.к. BB1 - высота
из ΔB1AP
<APH = <PAB1 + 90° = α + 90°
=> α= 45°
из ΔABQ
<AQO = <QAB + <ABQ = α + <ABO
BO - изогональ к BH
=> <ABO = <CBH
из Δ BB1C
<CBH = 90° - <C = 50° = <ABO
=> <AQO = α + <ABO = 45° + 50° = 95°
Вас заинтересует
2 года назад
2 года назад
3 года назад
3 года назад
8 лет назад
10 лет назад
10 лет назад