Площадь ромба АВСТ равна 18 . В треугольник АВТ вписана окружность, которая касается стороны АВ в точке К . Через точку К проведена прямая, параллельная диагонали АС и отсекающая от ромба треугольник площади 1 . Найдите синус угла ВАС .
Ответы
Ответ дал:
0
Дано: ABCD-ромб
AC, BD -диагонали
точка О - пересечение диагоналей
через т. К проведена прямая,которая пересекает BC в т. L, следует площадь ΔKBL=1
Пусть KL пересекает BD в т. R, тогда ΔKBR=ΔBRL и площадь ΔKBR=1
Так как ΔDAB - равнобедренный, то центр ее вписанной окружности лежит на высоте AO
KB=BO, как касательные,выходящие с одной точки(B)
Диагонали ромба делят его на 4 равных треугольника,в нашем случае площадь одного такого треугольника равна 18/4=4,5
То есть площадь ΔABO=4,5
ΔABO и ΔKRB подобные и их площади относятся как квадраты подобных сторон
Пусть OB=x,тогда и KB=x, тогда
Sabo/Skbr = (AB)^2/(KB)^2
4,5/0,5=(ab)^2/x^2
9x^2=(AB)^2
AB=3x
sin(BAC)=sin(BAD)=BO/AB=x/3x=1/3
Вас заинтересует
2 года назад
2 года назад
8 лет назад
10 лет назад
10 лет назад
10 лет назад