• Предмет: Геометрия
  • Автор: Me00007
  • Вопрос задан 10 лет назад

Точка вне плоскости ромба удалена от каждой из прямых, содержащих его стороны, на 20 см. Найдите расстояние от данной точки до плоскости ромба, если его диагонали равны 30 см и 40 см.

Ответы

Ответ дал: volodyk
0
Роьб АВСД, АС=30, ВД=40, диагонали в ромбе перпендикулярны и вточке пересечения О делятся пополам, АО=1/2АС=30/2=15, ДО=1/2ВД=40/2=20, Треугольник АОД прямоугольный, АД=корень(АО в квадрате+ДО в квадрате)=корень(225+400)=25 - сторона ромба, площадьАВСД=1/2*АС*ВД=1/2*30*40=600, проводим высоту СН , СН=площадь/АД=600/25=24, центр ромба - пересечение диагоналей=центр вписанной окружности, радиус=1/2*высота=24/2=12, проводим перпендикуляр ОМ в точку касания на АД, ОМ=радиус, К-точка, которая удалена, КО-высота, проводим МК=20, треугольник МКО прямоугольный, КО=корень (МК в квадрате-ОМ в квадрате)=корень(400-144)=16
Вас заинтересует