• Предмет: Геометрия
  • Автор: razinakarimboeva
  • Вопрос задан 7 лет назад

один из углов выпуклого четырехугольника-прямой, а остальные относятся как 3:4:8. Найдите неименьший угол четырехугольника.
А)72°
Б)54°
В)144°
Г)90°​

Ответы

Ответ дал: gayenkoviktoriia
1

Ответ:

Так как сумма четырехугольника составляет 360°, поэтому мы составляем уравнение по условию задачи:

3х+4х+8х=360°

15х=360°

х=360:15

х=24

Следовательно, наименьший угол четырехугольника будет составлять 72°


rajhanesanova: неверно, вы упустили, что 1 угол равен 90°
razinakarimboeva: спасибо
Ответ дал: rajhanesanova
2

Сумма углов выпуклого четырехугольника 360°.

так как 1 угол равен 90°, то сумма остальных углов:

360°-90°=270°.

раз остальные углы относятся как 3:4:8, то возьмём за х - одну часть и составим уравнение:

3х+4х+8х=270°

15х=270°

х=270°÷15

х=18° - одна часть

наименьший угол равен:

3×18°=54°

ответ: наименьший угол равен 54°

можно лучший ответ? :)


razinakarimboeva: спасибо
razinakarimboeva: лучшие лучшие ответ спасибо
Вас заинтересует