• Предмет: Алгебра
  • Автор: lov3lydiller
  • Вопрос задан 7 лет назад

(-х^5)^4 * (-х^4)^5 : (-х^3 * х^7)^3
срочно 30б

Ответы

Ответ дал: Аноним
1

Объяснение:

( - x {}^{5} ) {}^{4} \times  ( - x {}^{4} ) {}^{5}  \div ( - x {}^{3}  \times x {}^{7} ) {}^{3}  =\frac{\left(-x^{5}\right)^{4}\left(-x^{4}\right)^{5}}{\left(-x^{3}\right)^{3}\left(x^{7}\right)^{3}} =\frac{\left(-x^{5}\right)^{4}\left(-x^{4}\right)^{5}}{\left(-x^{3}\right)^{3}x^{21}} =\frac{\left(-1\right)^{4}\left(x^{5}\right)^{4}\left(-x^{4}\right)^{5}}{\left(-x^{3}\right)^{3}x^{21}} =\frac{\left(-1\right)^{4}x^{20}\left(-x^{4}\right)^{5}}{\left(-x^{3}\right)^{3}x^{21}} =\frac{1x^{20}\left(-x^{4}\right)^{5}}{\left(-x^{3}\right)^{3}x^{21}} =\frac{1x^{20}\left(-1\right)^{5}\left(x^{4}\right)^{5}}{\left(-x^{3}\right)^{3}x^{21}} =\frac{1x^{20}\left(-1\right)^{5}x^{20}}{\left(-x^{3}\right)^{3}x^{21}} =\frac{1x^{20}\left(-1\right)x^{20}}{\left(-x^{3}\right)^{3}x^{21}} =\frac{-x^{20}x^{20}}{\left(-x^{3}\right)^{3}x^{21}} = \frac{-x^{40}}{\left(-x^{3}\right)^{3}x^{21}} =\frac{-x^{40}}{\left(-1\right)^{3}\left(x^{3}\right)^{3}x^{21}} =\frac{-x^{40}}{\left(-1\right)^{3}x^{9}x^{21}} =\frac{-x^{40}}{-x^{9}x^{21}} =\frac{-x^{40}}{-x^{30}} =x^{10}

Вас заинтересует