• Предмет: Математика
  • Автор: Horm2
  • Вопрос задан 7 лет назад

ABCD- параллелограмм, AC- диагональ,

Угол BAC- 40 градусов, угол BCA- 25 градусов, найти: все углы параллелограмма (зад.7)

Приложения:

Ответы

Ответ дал: alenika2626
0

Ответ:

Тут все легко

ВС И АDпаралельны, АС-секущая, следовательно угол BAC=ABD=40 грлвсам как накрест ледащие( по моему или какие то другие), а уголы BCA=CAD=25 градусов.

Их сумма равна 65+65=130 градусов.

Сделовательно остальные 2 унла равны:

180-130=50

50/2=25

Угол B=D=25градусов

Можно в лучший ответ, я старалась))

Ответ дал: niko6813
0

Ответ:

️АВС: <АВС=180⁰-(<ВАС+<ВСА)=180⁰-(40°+25)=115⁰

В параллелограмме противолежащие углы равны, значит

<АDC=<АВС=115°

сумма углов прилежащих к одной стороне параллелограмма, равна 180°.

<ВАD=180°-<AВС=180°- 115°=65°

Ответ:65°,65°,115°,115°

Приложения:
Вас заинтересует