• Предмет: Математика
  • Автор: lobanovnikita33
  • Вопрос задан 6 лет назад

2cos*2cos x+cos x-1=0

Ответы

Ответ дал: stepankalpak2
0

Ответ:

Пошаговое объяснение:

Решение.

Если внимательно посмотреть на уравнение, то увидим, что уравнение является обычным квадратным, у которого вместо неизвестной переменной выступает тригонометрическая функция косинус. Подобные уравнения обычно решаются методом замены этой тригонометрической функции на любую переменную. Итак, выполним следующую замену:

Пусть {\cos  x\ }=z. При этом учитываем, что значения функции косинус определены на промежутке от —1 до 1. Следовательно и переменная z также может принимать только значения из указанного промежутка.

Подставим теперь вместо функции новую переменную в уравнение:

 \[{2z}^2+z-1=0\]

Решаем полученное уравнение с помощью вычисления его дискриминанта:

 \[D=1^2-4\cdot 2\cdot \left(-1\right)=1+8=9\]

Находим корни:

 \[z_1=\frac{-1-\sqrt{9}}{2\cdot 2}=\frac{-1-3}{4}=-1\]

 \[z_2=\frac{-1+\sqrt{9}}{2\cdot 2}=\frac{-1+3}{4}=\frac{1}{2}\]

Оба корня входят в промежуток от —1 до 1.

Теперь нужно вернуться от выбранной переменной к тригонометрической функции и решить полученные уравнения.

Рассмотрим первый вариант корня:

 \[z_1=-1\]

 \[{\cos  x\ }=-1\]

 \[x=\pm \left(\pi-{\arccos  1\ }\right)+2\pi k\]

 \[x=\pm \left(\pi-0\right)+2\pi k\]

 \[x=\pm \pi+2\pi k\]

Рассмотрим второй вариант корня:

 \[z_2=\frac{1}{2}\]

 \[{\cos  x\ }=\frac{1}{2}\]

 \[x=\pm {\arccos  \frac{1}{2}\ }+2\pi n\]

 \[x=\pm \frac{\pi}{3}+2\pi n\]

Переменные n и k принадлежат множеству Z.

Ответ. x=\pm \pi+2\pi k, x=\pm \frac{\pi}{3}+2\pi n, n,\ k\in Z.

Вас заинтересует