По данной стороне основания а=8 и боковому ребру в=6 найти высоту правильной четырехугольной пирамиды.
Ответы
Ответ дал:
0
находим диагональ основания ac
ac^2=8^2+8^2=√128=8√2
половина диагонали= 4√2
Высота равна (считаем по Пифагору) h^2=6^2-(4√2)^2=36-32=4
h=√4=2
ac^2=8^2+8^2=√128=8√2
половина диагонали= 4√2
Высота равна (считаем по Пифагору) h^2=6^2-(4√2)^2=36-32=4
h=√4=2
Вас заинтересует
8 лет назад
8 лет назад
10 лет назад
10 лет назад
10 лет назад