• Предмет: Алгебра
  • Автор: daniil7213
  • Вопрос задан 6 лет назад

Найдите наибольшее значение функции
y = 12 \sin(x)  - 6 \sqrt{3} x +  \sqrt{3} \pi + 22

На отрезке [ 0; pi/2]

Ответы

Ответ дал: mathkot
0

Ответ:

28

Объяснение:

x \in \bigg [ 0 ; \dfrac{\pi}{2} \bigg]

y = 12 \sin x - 6\sqrt{3}x + \sqrt{3}\pi + 22

y' = (12 \sin x - 6\sqrt{3}x + \sqrt{3}\pi + 22)' = (12 \sin x)' - (6\sqrt{3}x)' + (\sqrt{3}\pi)' + (22)' =

=12 ( \sin x)' - 6\sqrt{3}(x)' +0 + 0 = 12 \cos x - 6\sqrt{3}

y' = 0

12 \cos x - 6\sqrt{3} = 0

12 \cos x=  6\sqrt{3}|:12

\cos x = \dfrac{\sqrt{3} }{2}

x = \pm \arccos \bigg (\dfrac{\sqrt{3} }{2} \bigg) + 2 \pi n, n \in \mathbb Z

x =\pm \dfrac{\pi}{6} +2 \pi n, n \in \mathbb Z

n = 0: \left [ \begin{array}{ccc} \boxed{ x = \dfrac{\pi}{6} } \\ \\x = -\dfrac{\pi}{6} \end{array}\right

n = 0: \left [ \begin{array}{ccc} x = \dfrac{\pi}{6} + 2\pi \\ \\  x = -\dfrac{\pi}{6} + 2\pi = \dfrac{12\pi - \pi}{6} = \dfrac{11\pi}{6}  \end{array}\right

\bigg \{ \dfrac{\pi}{6} \bigg \} \subset \bigg [ 0 ; \dfrac{\pi}{2} \bigg]

y(0) =  12\sin 0 - 6\sqrt{3} \cdot 0 + \sqrt{3}\pi + 22 = \sqrt{3}\pi + 22

y \bigg(\dfrac{\pi}{2} \bigg) = 12 \sin  \bigg(\dfrac{\pi}{2} \bigg) - 6\sqrt{3} \cdot \dfrac{\pi}{2} + \sqrt{3}\pi + 22 = 12 + 22 - 3\sqrt{3}\pi  + \sqrt{3}\pi  =

= 34 + \pi \sqrt{3}(1 - 3) = 34 - 2\pi \sqrt{3}

y(0) > y\bigg(\dfrac{\pi}{2} \bigg)

y \bigg(\dfrac{\pi }{6} \bigg) = 12 \sin  \bigg(\dfrac{\pi}{6} \bigg) - 6\sqrt{3} \cdot \dfrac{\pi}{6} + \sqrt{3}\pi + 22 = 12 \cdot 0,5 - \sqrt{3}\pi + \sqrt{3}\pi + 22  =

= 6 + 22 = 28

y \bigg(\dfrac{\pi }{6} \bigg) > y(0) > y\bigg(\dfrac{\pi}{2} \bigg)

max(y): y \bigg(\dfrac{\pi }{6} \bigg)  = 28

Приложения:
Вас заинтересует