В равнобедренном треугольнике BPM(BP=BM) внешний угол BPT равен 126 градусам. Найдите угол PMB.
P.S можно пожалуйста с "дано:"
Ответы
Ответ дал:
1
Ответ:
63°
Объяснение:
Т.к. BPM - равнобедренный, ∠PBM = ∠PMB (углы при основании равнобедренного треугольника равны)
Т.к. BPT - внешний угол для ∠BPM, ∠BPT =∠PBM + ∠PMB (внешний угол треугольника равен сумме двух других, не смежных с ним)
Значит, ∠BPT = ∠PBM + ∠PMB
126° = ∠PBM + ∠PMB
∠PBM = ∠PMB =>
126° = 2*∠PMB
∠PMB = ∠PBM = 63°
Приложения:
Вас заинтересует
2 года назад
2 года назад
2 года назад
8 лет назад
9 лет назад