• Предмет: Математика
  • Автор: gkeork
  • Вопрос задан 10 лет назад

Доказать  что медиана равнобедренного треугольника проведенная к основанию является высотой и биссектрисой

Ответы

Ответ дал: Vladgemas
0
Ну она равнобедренная
Ответ дал: gkeork
0
Доказательство
Ответ дал: gkeork
0
надо
Ответ дал: coolyana4
0
Медиана в равнобедренном треугольнике, которую провели к его основанию, является также высотой и биссектрисой
Доказательство теоремы.
Допустим, мы имеем равнобедренный треугольник ABC, основание которого AB, а CD - это медиана, которую мы провели к его основанию. В треугольниках ACD и BCD угол CAD = углу CBD, как соответствующие углы при основании равнобедренного треугольника . А сторона AC = стороне BC (по определению равнобедренного треугольника). Сторона AD = стороне BD, Ведь точка D делит отрезок AB на равные части. Отсюда выходит, что треугольник ACD = треугольнику BCD.Из равенства этих треугольников мы имеем равенство соответствующих углов. То есть угол ACD = углу BCD и угол ADC = углу BDC. Из равенства 1 выходит, что CD - это биссектриса. А угол ADC и угол BDC - смежные углы, и из равенства 2 выходит, что они оба прямые. Получается, что CD - это высота треугольника. Это и есть свойство медианы равнобедренного треугольника.
Ответ дал: gkeork
0
Спасибо
Вас заинтересует