Реши задачу. В равнобедренном треугольнике MNK боковые стороны равны 27, 4 см, а угол, противолежащий основанию, равен 120 °. Определи расстояние от вершины этого угла до основания треугольника MNK.
Ответы
Ответ дал:
5
Ответ:
Расстояние от вершины угла, противолежащего основанию, до основания треугольника MNK равно 13,7 см.
Объяснение:
Требуется определить расстояние от вершины этого угла до основания треугольника MNK.
Дано: ΔMNK - равнобедренный;
МN = 27,4 см;
∠N = 120°.
Найти: расстояние от вершины угла, противолежащего основанию, до основания треугольника MNK.
Решение:
1. Рассмотрим ΔMNK - равнобедренный.
- Расстояние от точки до прямой есть длина перпендикуляра, опущенного из данной точки на данную прямую.
⇒ NН - высота.
- Сумма углов треугольника равна 180°.
⇒ ∠М + ∠N + ∠K = 180°
- Углы при основании равнобедренного треугольника равны.
⇒ ∠М =∠K =( 180° - 120°) : 2 = 30°
2. Рассмотрим ΔMNH - прямоугольный.
∠М = 30°
- Катет, лежащий против угла в 30°, равен половине гипотенузы.
⇒ NH = MN : 2 = 27,4 : 2 = 13,7 (см)
Расстояние от вершины угла, противолежащего основанию, до основания треугольника MNK равно 13,7 см.
Приложения:

Вас заинтересует
1 год назад
2 года назад
2 года назад
9 лет назад
9 лет назад