Ответы
Ответ дал:
4
Ответ:arctg³x/3 + In(x2+1)/2 +
Пошаговое объяснение:
1=f(arctg2x+x)dx/ (1+x²)=farctg²x dx/(1+x²) + Jxdx /(1+x²)
11=farctg²x dx/(1+x²) = пусть arctgx=U, = U'=dx/(1+x2) dx=(1+x2)dU
=> Тогда I = f(arctg²x+x)dx/ (1+x²)=arctg³x /3 + In(x2+1)/2 +C
11=farctg²x dx/(1+x²) =[U²dU=U³/3=arctg³x /3
12=Jxdx /(1+x2) = пусть х²+1=t, = 2x dx=dt →
dx=dt/2x =
12=fxdx /(1+x²) =(1/2) -fdt/t= (1/2) . In U = In(x2+1)/2
temirovkomron:
Здравствуйте. Огромное спасибо за решение. Но можете ли написать всё это в виде формул . Ато в некоторых моментах непонятно что да как.
Вас заинтересует
1 год назад
1 год назад
2 года назад
2 года назад
8 лет назад
8 лет назад
9 лет назад